A326838 Heinz numbers of non-constant integer partitions whose length and maximum both divide their sum.
30, 84, 264, 273, 286, 325, 351, 364, 390, 441, 490, 525, 624, 756, 784, 810, 840, 874, 900, 988, 1000, 1173, 1197, 1254, 1330, 1425, 1495, 1632, 1771, 2079, 2156, 2178, 2204, 2294, 2310, 2420, 2475, 2750, 2958, 3219, 3393, 3648, 3726, 3770, 3864, 3944, 4042
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 30: {1,2,3} 84: {1,1,2,4} 264: {1,1,1,2,5} 273: {2,4,6} 286: {1,5,6} 325: {3,3,6} 351: {2,2,2,6} 364: {1,1,4,6} 390: {1,2,3,6} 441: {2,2,4,4} 490: {1,3,4,4} 525: {2,3,3,4} 624: {1,1,1,1,2,6} 756: {1,1,2,2,2,4} 784: {1,1,1,1,4,4} 810: {1,2,2,2,2,3} 840: {1,1,1,2,3,4} 874: {1,8,9} 900: {1,1,2,2,3,3} 988: {1,1,6,8}
Crossrefs
Programs
-
Mathematica
Select[Range[1000],With[{y=Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]},!SameQ@@y&&Divisible[Total[y],Max[y]]&&Divisible[Total[y],Length[y]]]&]
Comments