cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326838 Heinz numbers of non-constant integer partitions whose length and maximum both divide their sum.

Original entry on oeis.org

30, 84, 264, 273, 286, 325, 351, 364, 390, 441, 490, 525, 624, 756, 784, 810, 840, 874, 900, 988, 1000, 1173, 1197, 1254, 1330, 1425, 1495, 1632, 1771, 2079, 2156, 2178, 2204, 2294, 2310, 2420, 2475, 2750, 2958, 3219, 3393, 3648, 3726, 3770, 3864, 3944, 4042
Offset: 1

Views

Author

Gus Wiseman, Jul 26 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The enumeration of these partitions by sum is given by A326852.

Examples

			The sequence of terms together with their prime indices begins:
    30: {1,2,3}
    84: {1,1,2,4}
   264: {1,1,1,2,5}
   273: {2,4,6}
   286: {1,5,6}
   325: {3,3,6}
   351: {2,2,2,6}
   364: {1,1,4,6}
   390: {1,2,3,6}
   441: {2,2,4,4}
   490: {1,3,4,4}
   525: {2,3,3,4}
   624: {1,1,1,1,2,6}
   756: {1,1,2,2,2,4}
   784: {1,1,1,1,4,4}
   810: {1,2,2,2,2,3}
   840: {1,1,1,2,3,4}
   874: {1,8,9}
   900: {1,1,2,2,3,3}
   988: {1,1,6,8}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],With[{y=Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]},!SameQ@@y&&Divisible[Total[y],Max[y]]&&Divisible[Total[y],Length[y]]]&]