A326836
Heinz numbers of integer partitions whose maximum part divides their sum.
Original entry on oeis.org
2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 23, 25, 27, 29, 30, 31, 32, 36, 37, 40, 41, 43, 47, 48, 49, 53, 59, 61, 63, 64, 67, 70, 71, 73, 79, 81, 83, 84, 89, 97, 101, 103, 107, 108, 109, 112, 113, 121, 125, 127, 128, 131, 135, 137, 139, 144, 149, 150, 151
Offset: 1
The sequence of terms together with their prime indices begins:
2: {1}
3: {2}
4: {1,1}
5: {3}
7: {4}
8: {1,1,1}
9: {2,2}
11: {5}
12: {1,1,2}
13: {6}
16: {1,1,1,1}
17: {7}
19: {8}
23: {9}
25: {3,3}
27: {2,2,2}
29: {10}
30: {1,2,3}
31: {11}
32: {1,1,1,1,1}
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[200],Divisible[Total[primeMS[#]],Max[primeMS[#]]]&]
A326837
Heinz numbers of integer partitions whose length and maximum both divide their sum.
Original entry on oeis.org
2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 30, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 84, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197
Offset: 1
The sequence of terms together with their prime indices begins:
2: {1}
3: {2}
4: {1,1}
5: {3}
7: {4}
8: {1,1,1}
9: {2,2}
11: {5}
13: {6}
16: {1,1,1,1}
17: {7}
19: {8}
23: {9}
25: {3,3}
27: {2,2,2}
29: {10}
30: {1,2,3}
31: {11}
32: {1,1,1,1,1}
37: {12}
Cf.
A001222,
A047993,
A056239,
A061395,
A067538,
A112798,
A316413,
A326836,
A326843,
A326847,
A326848.
-
isA326837 := proc(n)
psigsu := A056239(n) ;
psigma := A061395(n) ;
psigle := numtheory[bigomega](n) ;
if modp(psigsu,psigma) = 0 and modp(psigsu,psigle) = 0 then
true;
else
false;
end if;
end proc:
n := 1:
for i from 2 to 3000 do
if isA326837(i) then
printf("%d %d\n",n,i);
n := n+1 ;
end if;
end do: # R. J. Mathar, Aug 09 2019
-
Select[Range[2,100],With[{y=Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]},Divisible[Total[y],Max[y]]&&Divisible[Total[y],Length[y]]]&]
A340830
Number of strict integer partitions of n such that every part is a multiple of the number of parts.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 3, 1, 4, 1, 4, 1, 6, 1, 5, 2, 6, 1, 8, 1, 7, 4, 7, 1, 12, 1, 8, 6, 9, 1, 16, 1, 10, 9, 11, 1, 21, 1, 12, 13, 12, 1, 28, 1, 13, 17, 16, 1, 33, 1, 19, 22, 15, 1, 45, 1, 16, 28, 25, 1, 47, 1, 28, 34, 18
Offset: 1
The a(n) partitions for n = 1, 6, 10, 14, 18, 20, 24, 26, 30:
1 6 10 14 18 20 24 26 30
4,2 6,4 8,6 10,8 12,8 16,8 18,8 22,8
8,2 10,4 12,6 14,6 18,6 20,6 24,6
12,2 14,4 16,4 20,4 22,4 26,4
16,2 18,2 22,2 24,2 28,2
9,6,3 14,10 14,12 16,14
12,9,3 16,10 18,12
15,6,3 20,10
15,9,6
18,9,3
21,6,3
15,12,3
Note: A-numbers of Heinz-number sequences are in parentheses below.
The case where length divides sum also is
A340827.
The version for factorizations is
A340851.
Factorization of this type are counted by
A340853.
A072233 counts partitions by sum and length, with strict case
A008289.
A102627 counts strict partitions whose length divides sum.
A326850 counts strict partitions whose maximum part divides sum.
A326851 counts strict partitions with length and maximum dividing sum.
A340828 counts strict partitions with length divisible by maximum.
A340829 counts strict partitions with Heinz number divisible by sum.
A326852
Number of non-constant integer partitions of n whose length and maximum both divide n.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 16, 0, 1, 7, 11, 0, 30, 0, 40, 18, 1, 0, 201, 0, 1, 38, 124, 0, 426, 0, 211, 73, 1, 48, 1391, 0, 1, 131, 1741, 0, 1774, 0, 951, 2145, 1, 0, 8345, 0, 1853, 381, 2382, 0, 6718, 2761, 10633, 623, 1, 0, 68037
Offset: 0
The a(6) = 1 through a(16) = 11 partitions (empty columns not shown):
(321) (4211) (52111) (633) (7211111) (53322) (8332)
(642) (53331) (8422)
(651) (54222) (8431)
(4332) (54321) (8521)
(4422) (54411) (8611)
(4431) (55221) (42222211)
(6222) (55311) (43222111)
(6321) (43321111)
(6411) (44221111)
(322221) (44311111)
(332211) (82111111)
(333111)
(422211)
(432111)
(441111)
(621111)
The possibly constant case is
A326843.
-
Table[Length[Select[IntegerPartitions[n],!SameQ@@#&&Divisible[n,Length[#]]&&Divisible[n,Max[#]]&]],{n,0,30}]
Showing 1-4 of 4 results.
Comments