cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A326843 Number of integer partitions of n whose length and maximum both divide n.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 5, 2, 5, 3, 5, 2, 22, 2, 5, 11, 16, 2, 36, 2, 46, 22, 5, 2, 209, 3, 5, 42, 130, 2, 434, 2, 217, 77, 5, 52, 1400, 2, 5, 135, 1749, 2, 1782, 2, 957, 2151, 5, 2, 8355, 3, 1859, 385, 2388, 2, 6726, 2765, 10641, 627, 5, 2, 68049, 2, 5, 13424, 17142
Offset: 0

Views

Author

Gus Wiseman, Jul 26 2019

Keywords

Comments

The Heinz numbers of these partitions are given by A326837.

Examples

			The a(1) = 1 through a(8) = 5 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (11111)  (33)      (1111111)  (44)
                    (1111)           (222)                (2222)
                                     (321)                (4211)
                                     (111111)             (11111111)
The a(12) = 22 partitions:
  (12)
  (6,6)
  (4,4,4)
  (6,3,3)
  (6,4,2)
  (6,5,1)
  (3,3,3,3)
  (4,3,3,2)
  (4,4,2,2)
  (4,4,3,1)
  (6,2,2,2)
  (6,3,2,1)
  (6,4,1,1)
  (2,2,2,2,2,2)
  (3,2,2,2,2,1)
  (3,3,2,2,1,1)
  (3,3,3,1,1,1)
  (4,2,2,2,1,1)
  (4,3,2,1,1,1)
  (4,4,1,1,1,1)
  (6,2,1,1,1,1)
  (1,1,1,1,1,1,1,1,1,1,1,1)
		

Crossrefs

The strict case is A326851.
The non-constant case is A326852.
The case where all parts (not just the maximum) divide n is A326842.

Programs

  • Mathematica
    Table[If[n==0,1,Length[Select[IntegerPartitions[n],Divisible[n,Length[#]]&&Divisible[n,Max[#]]&]]],{n,0,30}]

A326851 Number of strict integer partitions of n whose length and maximum both divide n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 2, 3, 1, 5, 1, 6, 1, 1, 1, 16, 1, 1, 1, 12, 1, 33, 1, 15, 1, 1, 1, 60, 1, 1, 1, 51, 1, 81, 1, 31, 57, 1, 1, 216, 1, 55, 1, 45, 1, 230, 1, 223, 1, 1, 1, 800, 1, 1, 314, 273, 1, 607, 1, 81, 1, 315, 1, 2404, 1, 1, 319
Offset: 0

Views

Author

Gus Wiseman, Jul 26 2019

Keywords

Examples

			The a(6) = 2 through a(24) = 16 partitions (1 terms not shown):
  6       12        15          16        18      20           24
  3,2,1   6,4,2     5,4,3,2,1   8,4,3,1   9,5,4   10,5,3,2     12,7,5
          6,5,1                 8,5,2,1   9,6,3   10,5,4,1     12,8,4
          6,3,2,1                         9,7,2   10,6,3,1     12,9,3
                                          9,8,1   10,7,2,1     12,10,2
                                                  10,4,3,2,1   12,11,1
                                                               8,7,5,4
                                                               8,7,6,3
                                                               12,5,4,3
                                                               12,6,4,2
                                                               12,6,5,1
                                                               12,7,3,2
                                                               12,7,4,1
                                                               12,8,3,1
                                                               12,9,2,1
                                                               8,6,4,3,2,1
		

Crossrefs

The non-strict case is A326843.

Programs

  • Mathematica
    Table[If[n==0,1,Length[Select[IntegerPartitions[n],UnsameQ@@#&&Divisible[n,Max[#]]&&Divisible[n,Length[#]]&]]],{n,0,30}]

A340830 Number of strict integer partitions of n such that every part is a multiple of the number of parts.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 3, 1, 4, 1, 4, 1, 6, 1, 5, 2, 6, 1, 8, 1, 7, 4, 7, 1, 12, 1, 8, 6, 9, 1, 16, 1, 10, 9, 11, 1, 21, 1, 12, 13, 12, 1, 28, 1, 13, 17, 16, 1, 33, 1, 19, 22, 15, 1, 45, 1, 16, 28, 25, 1, 47, 1, 28, 34, 18
Offset: 1

Views

Author

Gus Wiseman, Feb 02 2021

Keywords

Examples

			The a(n) partitions for n = 1, 6, 10, 14, 18, 20, 24, 26, 30:
  1   6     10    14     18      20     24       26      30
      4,2   6,4   8,6    10,8    12,8   16,8     18,8    22,8
            8,2   10,4   12,6    14,6   18,6     20,6    24,6
                  12,2   14,4    16,4   20,4     22,4    26,4
                         16,2    18,2   22,2     24,2    28,2
                         9,6,3          14,10    14,12   16,14
                                        12,9,3   16,10   18,12
                                        15,6,3           20,10
                                                         15,9,6
                                                         18,9,3
                                                         21,6,3
                                                         15,12,3
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
The non-strict case is A143773 (A316428).
The case where length divides sum also is A340827.
The version for factorizations is A340851.
Factorization of this type are counted by A340853.
A018818 counts partitions into divisors (A326841).
A047993 counts balanced partitions (A106529).
A067538 counts partitions whose length/max divide sum (A316413/A326836).
A072233 counts partitions by sum and length, with strict case A008289.
A102627 counts strict partitions whose length divides sum.
A326850 counts strict partitions whose maximum part divides sum.
A326851 counts strict partitions with length and maximum dividing sum.
A340828 counts strict partitions with length divisible by maximum.
A340829 counts strict partitions with Heinz number divisible by sum.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&And@@IntegerQ/@(#/Length[#])&]],{n,30}]

Formula

a(n) = Sum_{d|n} A008289(n/d, d).

A340827 Number of strict integer partitions of n into divisors of n whose length also divides n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 5, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 5, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 25, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 18, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 17, 1, 1, 1, 1, 1, 14, 1, 1, 1, 1, 1, 12, 1, 1, 1, 3, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Feb 01 2021

Keywords

Comments

The first element not in A326715 that is however a Heinz number of these partitions is 273.

Examples

			The a(n) partitions for n = 6, 12, 24, 90, 84:
  6       12        24            90                      84
  3,2,1   6,4,2     12,8,4        45,30,15                42,28,14
          6,3,2,1   12,6,4,2      45,30,9,5,1             42,21,14,7
                    12,8,3,1      45,18,15,9,3            42,28,12,2
                    8,6,4,3,2,1   45,30,10,3,2            42,28,6,4,3,1
                                  45,18,15,10,2           42,28,7,4,2,1
                                  45,30,6,5,3,1           42,14,12,7,6,3
                                  45,30,9,3,2,1           42,21,12,4,3,2
                                  45,15,10,9,6,5          42,21,12,6,2,1
                                  45,18,10,9,5,3          42,21,14,4,2,1
                                  45,18,10,9,6,2          28,21,14,12,6,3
                                  45,18,15,6,5,1          28,21,14,12,7,2
                                  45,18,15,9,2,1          42,21,7,6,4,3,1
                                  30,18,15,10,6,5,3,2,1   42,14,12,7,4,3,2
                                                          42,14,12,7,6,2,1
                                                          28,21,14,12,4,3,2
                                                          28,21,14,12,6,2,1
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
The non-strict case is A326842 (A326847).
A018818 = partitions using divisors (A326841).
A047993 = balanced partitions (A106529).
A067538 = partitions whose length/maximum divides sum (A316413/A326836).
A072233 = partitions by sum and length, with strict case A008289.
A102627 = strict partitions whose length divides sum.
A326850 = strict partitions whose maximum part divides sum.
A326851 = strict partitions w/ length and max dividing sum.
A340828 = strict partitions w/ length divisible by max.
A340829 = strict partitions w/ Heinz number divisible by sum.
A340830 = strict partitions w/ parts divisible by length.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n,All,Divisors[n]],UnsameQ@@#&&Divisible[n,Length[#]]&]],{n,30}]
  • PARI
    A340827(n, divsleft=List(divisors(n)), rest=n, len=0) = if(rest<=0, !rest && !(n%len), my(s=0, d); forstep(i=#divsleft, 1, -1, d = divsleft[i]; listpop(divsleft,i); if(rest>=d, s += A340827(n, divsleft, rest-d, 1+len))); (s)); \\ Antti Karttunen, Feb 22 2023
    
  • Scheme
    ;; See the Links-section. - Antti Karttunen, Feb 22 2023

Extensions

Data section extended up to a(105) by Antti Karttunen, Feb 22 2023

A326838 Heinz numbers of non-constant integer partitions whose length and maximum both divide their sum.

Original entry on oeis.org

30, 84, 264, 273, 286, 325, 351, 364, 390, 441, 490, 525, 624, 756, 784, 810, 840, 874, 900, 988, 1000, 1173, 1197, 1254, 1330, 1425, 1495, 1632, 1771, 2079, 2156, 2178, 2204, 2294, 2310, 2420, 2475, 2750, 2958, 3219, 3393, 3648, 3726, 3770, 3864, 3944, 4042
Offset: 1

Views

Author

Gus Wiseman, Jul 26 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The enumeration of these partitions by sum is given by A326852.

Examples

			The sequence of terms together with their prime indices begins:
    30: {1,2,3}
    84: {1,1,2,4}
   264: {1,1,1,2,5}
   273: {2,4,6}
   286: {1,5,6}
   325: {3,3,6}
   351: {2,2,2,6}
   364: {1,1,4,6}
   390: {1,2,3,6}
   441: {2,2,4,4}
   490: {1,3,4,4}
   525: {2,3,3,4}
   624: {1,1,1,1,2,6}
   756: {1,1,2,2,2,4}
   784: {1,1,1,1,4,4}
   810: {1,2,2,2,2,3}
   840: {1,1,1,2,3,4}
   874: {1,8,9}
   900: {1,1,2,2,3,3}
   988: {1,1,6,8}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],With[{y=Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]},!SameQ@@y&&Divisible[Total[y],Max[y]]&&Divisible[Total[y],Length[y]]]&]
Showing 1-5 of 5 results.