cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A355740 Numbers of which it is not possible to choose a different divisor of each prime index.

Original entry on oeis.org

4, 8, 12, 16, 18, 20, 24, 27, 28, 32, 36, 40, 44, 48, 50, 52, 54, 56, 60, 64, 68, 72, 76, 80, 81, 84, 88, 90, 92, 96, 100, 104, 108, 112, 116, 120, 124, 125, 126, 128, 132, 135, 136, 140, 144, 148, 150, 152, 156, 160, 162, 164, 168, 172, 176, 180, 184, 188
Offset: 1

Views

Author

Gus Wiseman, Jul 22 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
By Hall's marriage theorem, k is a term if and only if there is a sub-multiset S of the prime indices of k such that fewer than |S| numbers are divisors of a member of S. Equivalently, k is divisible by a member of A370348. - Robert Israel, Feb 15 2024

Examples

			The terms together with their prime indices begin:
    4: {1,1}
    8: {1,1,1}
   12: {1,1,2}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
   27: {2,2,2}
   28: {1,1,4}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   40: {1,1,1,3}
   44: {1,1,5}
   48: {1,1,1,1,2}
For example, the choices of a divisor of each prime index of 90 are: (1,1,1,1), (1,1,1,3), (1,1,2,1), (1,1,2,3), (1,2,1,1), (1,2,1,3), (1,2,2,1), (1,2,2,3). But none of these has all distinct elements, so 90 is in the sequence.
		

Crossrefs

Positions of 0's in A355739.
The case of just prime factors (not all divisors) is A355529, odd A355535.
The unordered case is counted by A355733, firsts A355734.
A000005 counts divisors.
A001414 adds up distinct prime divisors, counted by A001221.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A120383 lists numbers divisible by all of their prime indices.
A324850 lists numbers divisible by the product of their prime indices.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A355741 chooses prime factors of prime indices, variations A355744, A355745.

Programs

  • Maple
    filter:= proc(n) uses numtheory, GraphTheory; local B, S, F, D, E, G, t, d;
      F:= ifactors(n)[2];
      F:= map(t -> [pi(t[1]), t[2]], F);
      D:= `union`(seq(divisors(t[1]), t = F));
      F:= map(proc(t) local i; seq([t[1], i], i=1..t[2]) end proc, F);
      if nops(D) < nops(F) then return false fi;
      E:= {seq(seq({t, d}, d=divisors(t[1])), t = F)};
      S:= map(t -> convert(t, name), [op(F), op(D)]);
      E:= map(e -> map(convert, e, name), E);
      G:= Graph(S, E);
      B:= BipartiteMatching(G);
      B[1] = nops(F);
    end proc:
    remove(filter, [$1..200]); # Robert Israel, Feb 15 2024
  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Select[Tuples[Divisors/@primeMS[#]],UnsameQ@@#&]=={}&]

Formula

We have A001221(a(n)) >= A303975(a(n)).

A355735 Number of ways to choose a divisor of each prime index of n (taken in weakly increasing order) such that the result is weakly increasing.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 1, 3, 2, 2, 2, 4, 3, 3, 1, 2, 3, 4, 2, 5, 2, 3, 2, 3, 4, 4, 3, 4, 3, 2, 1, 3, 2, 4, 3, 6, 4, 7, 2, 2, 5, 4, 2, 4, 3, 4, 2, 6, 3, 3, 4, 5, 4, 3, 3, 7, 4, 2, 3, 6, 2, 7, 1, 6, 3, 2, 2, 5, 4, 6, 3, 4, 6, 4, 4, 4, 7, 4, 2, 5, 2, 2, 5, 3, 4, 7
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(15) = 3 ways are: (1,1), (1,3), (2,3).
The a(18) = 3 ways are: (1,1,1), (1,1,2), (1,2,2).
The a(2) = 1 through a(19) = 4 ways:
  1  1  11  1  11  1  111  11  11  1  111  1  11  11  1111  1  111  1
     2      3  12  2       12  13  5  112  2  12  13        7  112  2
                   4       22              3  14  23           122  4
                                           6                        8
		

Crossrefs

Allowing any choice of divisors gives A355731, firsts A355732.
Choosing a multiset instead of sequence gives A355733, firsts A355734.
Positions of first appearances are A355736.
Choosing only prime divisors gives A355745, variations A355741, A355744.
The reverse version is A355749.
A000005 counts divisors.
A001414 adds up distinct prime divisors, counted by A001221.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A061395 selects the maximum prime index.
A120383 lists numbers divisible by all of their prime indices.
A324850 lists numbers divisible by the product of their prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Tuples[Divisors/@primeMS[n]],LessEqual@@#&]],{n,100}]

A340852 Numbers that can be factored in such a way that every factor is a divisor of the number of factors.

Original entry on oeis.org

1, 4, 16, 27, 32, 64, 96, 128, 144, 192, 216, 256, 288, 324, 432, 486, 512, 576, 648, 729, 864, 972, 1024, 1296, 1458, 1728, 1944, 2048, 2560, 2592, 2916, 3125, 3888, 4096, 5120, 5184, 5832, 6144, 6400, 7776, 8192, 9216, 11664, 12288, 12800, 13824, 15552
Offset: 1

Views

Author

Gus Wiseman, Feb 04 2021

Keywords

Comments

Also numbers that can be factored in such a way that the length is divisible by the least common multiple.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    4: {1,1}
   16: {1,1,1,1}
   27: {2,2,2}
   32: {1,1,1,1,1}
   64: {1,1,1,1,1,1}
   96: {1,1,1,1,1,2}
  128: {1,1,1,1,1,1,1}
  144: {1,1,1,1,2,2}
  192: {1,1,1,1,1,1,2}
  216: {1,1,1,2,2,2}
  256: {1,1,1,1,1,1,1,1}
  288: {1,1,1,1,1,2,2}
  324: {1,1,2,2,2,2}
  432: {1,1,1,1,2,2,2}
For example, 24576 has three suitable factorizations:
  (2*2*2*2*2*2*2*2*2*2*2*12)
  (2*2*2*2*2*2*2*2*2*2*4*6)
  (2*2*2*2*2*2*2*2*2*3*4*4)
so is in the sequence.
		

Crossrefs

Partitions of this type are counted by A340693 (A340606).
These factorizations are counted by A340851.
The reciprocal version is A340853.
A143773 counts partitions whose parts are multiples of the number of parts.
A320911 can be factored into squarefree semiprimes.
A340597 have an alt-balanced factorization.
A340656 lack a twice-balanced factorization, complement A340657.
- Factorizations -
A001055 counts factorizations, with strict case A045778.
A316439 counts factorizations by product and length.
A339846 counts factorizations of even length.
A339890 counts factorizations of odd length.
A340101 counts factorizations into odd factors, odd-length case A340102.
A340653 counts balanced factorizations.
A340831/A340832 count factorizations with odd maximum/minimum.
A340785 counts factorizations into even numbers, even-length case A340786.
A340854 cannot be factored with odd least factor, complement A340855.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[1000],Select[facs[#],And@@IntegerQ/@(Length[#]/#)&]!={}&]

A340606 Numbers whose prime indices (A112798) are all divisors of the number of prime factors (A001222).

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 16, 20, 24, 32, 36, 50, 54, 56, 64, 81, 84, 96, 125, 126, 128, 144, 160, 176, 189, 196, 216, 240, 256, 294, 324, 360, 384, 400, 416, 441, 486, 512, 540, 576, 600, 624, 686, 729, 810, 864, 896, 900, 936, 968, 1000, 1024, 1029, 1040, 1088, 1215
Offset: 1

Views

Author

Gus Wiseman, Jan 24 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   4: {1,1}
   6: {1,2}
   8: {1,1,1}
   9: {2,2}
  16: {1,1,1,1}
  20: {1,1,3}
  24: {1,1,1,2}
  32: {1,1,1,1,1}
  36: {1,1,2,2}
  50: {1,3,3}
  54: {1,2,2,2}
  56: {1,1,1,4}
  64: {1,1,1,1,1,1}
  81: {2,2,2,2}
  84: {1,1,2,4}
  96: {1,1,1,1,1,2}
		

Crossrefs

Note: Heinz numbers are given in parentheses below.
The reciprocal version is A143773 (A316428).
These partitions are counted by A340693.
A120383 lists numbers divisible by all of their prime indices.
A324850 lists numbers divisible by the product of their prime indices.
A003963 multiplies together the prime indices of n.
A018818 counts partitions of n into divisors of n (A326841).
A047993 counts balanced partitions (A106529).
A067538 counts partitions of n whose length divides n (A316413).
A056239 adds up the prime indices of n.
A061395 selects the maximum prime index.
A067538 counts partitions of n whose maximum divides n (A326836).
A072233 counts partitions by sum and length.
A112798 lists the prime indices of each positive integer.
A168659 = partitions whose length is divisible by their maximum (A340609).
A168659 = partitions whose maximum is divisible by their length (A340610).
A289509 lists numbers with relatively prime prime indices.
A326842 = partitions of n whose length and parts all divide n (A326847).
A326843 = partitions of n whose length and maximum both divide n (A326837).
A340852 have a factorization with factors dividing length.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],And@@IntegerQ/@(PrimeOmega[#]/primeMS[#])&]

A340830 Number of strict integer partitions of n such that every part is a multiple of the number of parts.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 3, 1, 4, 1, 4, 1, 6, 1, 5, 2, 6, 1, 8, 1, 7, 4, 7, 1, 12, 1, 8, 6, 9, 1, 16, 1, 10, 9, 11, 1, 21, 1, 12, 13, 12, 1, 28, 1, 13, 17, 16, 1, 33, 1, 19, 22, 15, 1, 45, 1, 16, 28, 25, 1, 47, 1, 28, 34, 18
Offset: 1

Views

Author

Gus Wiseman, Feb 02 2021

Keywords

Examples

			The a(n) partitions for n = 1, 6, 10, 14, 18, 20, 24, 26, 30:
  1   6     10    14     18      20     24       26      30
      4,2   6,4   8,6    10,8    12,8   16,8     18,8    22,8
            8,2   10,4   12,6    14,6   18,6     20,6    24,6
                  12,2   14,4    16,4   20,4     22,4    26,4
                         16,2    18,2   22,2     24,2    28,2
                         9,6,3          14,10    14,12   16,14
                                        12,9,3   16,10   18,12
                                        15,6,3           20,10
                                                         15,9,6
                                                         18,9,3
                                                         21,6,3
                                                         15,12,3
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
The non-strict case is A143773 (A316428).
The case where length divides sum also is A340827.
The version for factorizations is A340851.
Factorization of this type are counted by A340853.
A018818 counts partitions into divisors (A326841).
A047993 counts balanced partitions (A106529).
A067538 counts partitions whose length/max divide sum (A316413/A326836).
A072233 counts partitions by sum and length, with strict case A008289.
A102627 counts strict partitions whose length divides sum.
A326850 counts strict partitions whose maximum part divides sum.
A326851 counts strict partitions with length and maximum dividing sum.
A340828 counts strict partitions with length divisible by maximum.
A340829 counts strict partitions with Heinz number divisible by sum.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&And@@IntegerQ/@(#/Length[#])&]],{n,30}]

Formula

a(n) = Sum_{d|n} A008289(n/d, d).

A340851 Number of factorizations of n such that every factor is a divisor of the number of factors.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Feb 04 2021

Keywords

Comments

Also factorizations whose number of factors is divisible by their least common multiple.

Examples

			The a(n) factorizations for n = 8192, 46656, 73728:
  2*2*2*2*2*4*8*8          6*6*6*6*6*6              2*2*2*2*2*2*2*2*2*4*6*6
  2*2*2*2*4*4*4*8          2*2*2*2*2*2*3*3*3*3*3*3  2*2*2*2*2*2*2*2*3*4*4*6
  2*2*2*4*4*4*4*4                                   2*2*2*2*2*2*2*3*3*4*4*4
  2*2*2*2*2*2*2*2*2*2*2*4                           2*2*2*2*2*2*2*2*2*2*6*12
                                                    2*2*2*2*2*2*2*2*2*3*4*12
		

Crossrefs

The version for partitions is A340693, with reciprocal version A143773.
Positions of nonzero terms are A340852.
The reciprocal version is A340853.
A320911 can be factored into squarefree semiprimes.
A340597 have an alt-balanced factorization.
A340656 lack a twice-balanced factorization, complement A340657.
- Factorizations -
A001055 counts factorizations, with strict case A045778.
A316439 counts factorizations by product and length.
A339846 counts factorizations of even length.
A339890 counts factorizations of odd length.
A340101 counts factorizations into odd factors, odd-length case A340102.
A340653 counts balanced factorizations.
A340785 counts factorizations into even numbers, even-length case A340786.
A340831/A340832 count factorizations with odd maximum/minimum.
A340854 cannot be factored with odd least factor, complement A340855.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],And@@IntegerQ/@(Length[#]/#)&]],{n,100}]

A340853 Number of factorizations of n such that every factor is a multiple of the number of factors.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 2, 1, 3, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Feb 04 2021

Keywords

Comments

Also factorizations whose greatest common divisor is a multiple of the number of factors.

Examples

			The a(n) factorizations for n = 2, 4, 16, 48, 96, 144, 216, 240, 432:
  2   4     16    48     96     144     216      240     432
      2*2   2*8   6*8    2*48   2*72    4*54     4*60    6*72
            4*4   2*24   4*24   4*36    6*36     6*40    8*54
                  4*12   6*16   6*24    12*18    8*30    12*36
                         8*12   8*18    2*108    10*24   18*24
                                12*12   6*6*6    12*20   2*216
                                        3*3*24   2*120   4*108
                                        3*6*12           3*3*48
                                                         3*6*24
                                                         6*6*12
                                                         3*12*12
		

Crossrefs

Positions of 1's are A048103.
Positions of terms > 1 are A100716.
The version for partitions is A143773 (A316428).
The reciprocal for partitions is A340693 (A340606).
The version for strict partitions is A340830.
The reciprocal version is A340851.
A320911 can be factored into squarefree semiprimes.
A340597 have an alt-balanced factorization.
A340656 lack a twice-balanced factorization, complement A340657.
- Factorizations -
A001055 counts factorizations, with strict case A045778.
A316439 counts factorizations by product and length.
A339846 counts factorizations of even length.
A339890 counts factorizations of odd length.
A340101 counts factorizations into odd factors, odd-length case A340102.
A340653 counts balanced factorizations.
A340785 counts factorizations into even factors, even-length case A340786.
A340831/A340832 counts factorizations with odd maximum/minimum.
A340854 cannot be factored with odd least factor, complement A340855.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],n>1&&Divisible[GCD@@#,Length[#]]&]],{n,100}]

A340693 Number of integer partitions of n where each part is a divisor of the number of parts.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 2, 5, 5, 7, 7, 10, 10, 14, 14, 17, 19, 24, 24, 32, 33, 42, 43, 58, 59, 75, 79, 98, 104, 124, 128, 156, 166, 196, 204, 239, 251, 292, 306, 352, 372, 426, 445, 514, 543, 616, 652, 745, 790, 896, 960, 1080, 1162, 1311, 1400, 1574, 1692, 1892
Offset: 0

Views

Author

Gus Wiseman, Jan 23 2021

Keywords

Comments

The only strict partitions counted are (), (1), and (2,1).
Is there a simple generating function?

Examples

			The a(1) = 1 through a(9) = 7 partitions:
  1  11  21   22    311    2211    331      2222      333
         111  1111  2111   111111  2221     4211      4221
                    11111          4111     221111    51111
                                   211111   311111    222111
                                   1111111  11111111  321111
                                                      21111111
                                                      111111111
		

Crossrefs

Note: Heinz numbers are given in parentheses below.
The reciprocal version is A143773 (A316428), with strict case A340830.
The case where length also divides n is A326842 (A326847).
The Heinz numbers of these partitions are A340606.
The version for factorizations is A340851, with reciprocal version A340853.
A018818 counts partitions of n into divisors of n (A326841).
A047993 counts balanced partitions (A106529).
A067538 counts partitions of n whose length/max divides n (A316413/A326836).
A067539 counts partitions with integer geometric mean (A326623).
A072233 counts partitions by sum and length.
A168659 = partitions whose greatest part divides their length (A340609).
A168659 = partitions whose length divides their greatest part (A340610).
A326843 = partitions of n whose length and maximum both divide n (A326837).
A330950 = partitions of n whose Heinz number is divisible by n (A324851).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And@@IntegerQ/@(Length[#]/#)&]],{n,0,30}]
Showing 1-8 of 8 results.