cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A168659 Number of partitions of n such that the number of parts is divisible by the greatest part. Also number of partitions of n such that the greatest part is divisible by the number of parts.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 6, 6, 8, 9, 14, 16, 22, 25, 33, 39, 51, 60, 79, 92, 116, 137, 174, 204, 254, 300, 368, 435, 530, 625, 760, 896, 1076, 1267, 1518, 1780, 2121, 2484, 2946, 3444, 4070, 4749, 5594, 6514, 7637, 8879, 10384, 12043, 14040, 16255
Offset: 1

Views

Author

Vladeta Jovovic, Dec 02 2009

Keywords

Examples

			a(5)=3 because in the partitions [1,1,1,1,1], [1,1,1,2], [1,1,3] the number of parts is divisible by the greatest part; not true for the partitions [1,2,2],[2,3], [1,4], and [5]. - _Emeric Deutsch_, Dec 04 2009
From _Gus Wiseman_, Feb 08 2021: (Start)
The a(1) = 1 through a(10) = 9 partitions of the first type:
  1  11  21   22    311    321     322      332       333        4222
         111  1111  2111   2211    331      2222      4221       4321
                    11111  111111  2221     4211      4311       4411
                                   4111     221111    51111      52111
                                   211111   311111    222111     222211
                                   1111111  11111111  321111     322111
                                                      21111111   331111
                                                      111111111  22111111
                                                                 1111111111
The a(1) = 1 through a(11) = 14 partitions of the second type (A=10, B=11):
  1   2   3    4    5     6     7      8      9       A       B
          21   22   41    42    43     44     63      64      65
                    311   321   61     62     81      82      83
                                322    332    333     622     A1
                                331    611    621     631     632
                                4111   4211   4221    4222    641
                                              4311    4321    911
                                              51111   4411    4322
                                                      52111   4331
                                                              4421
                                                              8111
                                                              52211
                                                              53111
                                                              611111
(End)
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
The case of equality is A047993 (A106529).
The Heinz numbers of these partitions are A340609/A340610.
If all parts (not just the greatest) are divisors we get A340693 (A340606).
The strict case in the second interpretation is A340828 (A340856).
A006141 = partitions whose length equals their minimum (A324522).
A067538 = partitions whose length/max divides their sum (A316413/A326836).
A200750 = partitions with length coprime to maximum (A340608).
Row sums of A350879.

Programs

  • Maple
    a := proc (n) local pn, ct, j: with(combinat): pn := partition(n): ct := 0: for j to numbpart(n) do if `mod`(nops(pn[j]), max(seq(pn[j][i], i = 1 .. nops(pn[j])))) = 0 then ct := ct+1 else end if end do: ct end proc: seq(a(n), n = 1 .. 50); # Emeric Deutsch, Dec 04 2009
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Divisible[Length[#],Max[#]]&]],{n,30}] (* Gus Wiseman, Feb 08 2021 *)
    nmax = 100; s = 0; Do[s += Normal[Series[Sum[x^((m+1)*k - 1) * Product[(1 - x^(m*k + j - 1))/(1 - x^j), {j, 1, k-1}], {k, 1, (1 + nmax)/(1 + m) + 1}], {x, 0, nmax}]], {m, 1, nmax}]; Rest[CoefficientList[s, x]] (* Vaclav Kotesovec, Oct 18 2024 *)

Formula

G.f.: Sum_{i>=1} Sum_{j>=1} x^((i+1)*j-1) * Product_{k=1..j-1} (1-x^(i*j+k-1))/(1-x^k). - Seiichi Manyama, Jan 24 2022
a(n) ~ c * exp(Pi*sqrt(2*n/3)) / n^(3/2), where c = 0.04628003... - Vaclav Kotesovec, Nov 16 2024

Extensions

Extended by Emeric Deutsch, Dec 04 2009

A340610 Numbers whose number of prime factors (A001222) divides their greatest prime index (A061395).

Original entry on oeis.org

2, 3, 5, 6, 7, 9, 11, 13, 14, 17, 19, 20, 21, 23, 26, 29, 30, 31, 35, 37, 38, 39, 41, 43, 45, 47, 49, 50, 52, 53, 56, 57, 58, 59, 61, 65, 67, 71, 73, 74, 75, 78, 79, 83, 84, 86, 87, 89, 91, 92, 95, 97, 101, 103, 106, 107, 109, 111, 113, 117, 122, 125, 126, 127
Offset: 1

Views

Author

Gus Wiseman, Jan 27 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
     2: {1}        29: {10}       56: {1,1,1,4}
     3: {2}        30: {1,2,3}    57: {2,8}
     5: {3}        31: {11}       58: {1,10}
     6: {1,2}      35: {3,4}      59: {17}
     7: {4}        37: {12}       61: {18}
     9: {2,2}      38: {1,8}      65: {3,6}
    11: {5}        39: {2,6}      67: {19}
    13: {6}        41: {13}       71: {20}
    14: {1,4}      43: {14}       73: {21}
    17: {7}        45: {2,2,3}    74: {1,12}
    19: {8}        47: {15}       75: {2,3,3}
    20: {1,1,3}    49: {4,4}      78: {1,2,6}
    21: {2,4}      50: {1,3,3}    79: {22}
    23: {9}        52: {1,1,6}    83: {23}
    26: {1,6}      53: {16}       84: {1,1,2,4}
		

Crossrefs

Note: Heinz numbers are given in parentheses below.
The case of equality is A047993 (A106529).
The case where all parts are multiples, not just the maximum part, is A143773 (A316428), with strict case A340830, while the case of factorizations is A340853.
These are the Heinz numbers of certain partitions counted by A168659.
The reciprocal version is A340609.
The squarefree case is A340828 (A340856).
A001222 counts prime factors.
A006141 counts partitions whose length equals their minimum (A324522).
A056239 adds up prime indices.
A061395 selects the maximum prime index.
A067538 counts partitions whose length divides their sum (A316413).
A067538 counts partitions whose maximum divides their sum (A326836).
A112798 lists the prime indices of each positive integer.
A200750 counts partitions with length coprime to maximum (A340608).

Programs

  • Maple
    filter:= proc(n) local F,m,g,t;
      F:= ifactors(n)[2];
      m:= add(t[2],t=F);
      g:= numtheory:-pi(max(seq(t[1],t=F)));
      g mod m = 0;
    end proc:
    select(filter, [$2..1000]); # Robert Israel, Feb 08 2021
  • Mathematica
    Select[Range[2,100],Divisible[PrimePi[FactorInteger[#][[-1,1]]],PrimeOmega[#]]&]

Formula

A001222(a(n)) divides A061395(a(n)).

A342086 Number of strict factorizations of divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 5, 2, 5, 3, 5, 2, 9, 2, 5, 5, 7, 2, 9, 2, 9, 5, 5, 2, 16, 3, 5, 5, 9, 2, 15, 2, 10, 5, 5, 5, 18, 2, 5, 5, 16, 2, 15, 2, 9, 9, 5, 2, 25, 3, 9, 5, 9, 2, 16, 5, 16, 5, 5, 2, 31, 2, 5, 9, 14, 5, 15, 2, 9, 5, 15, 2, 34, 2, 5, 9, 9, 5, 15, 2, 25, 7, 5
Offset: 1

Views

Author

Gus Wiseman, Mar 05 2021

Keywords

Comments

A strict factorization of n is a set of distinct positive integers > 1 with product n.

Examples

			The a(1) = 1 through a(12) = 9 factorizations:
  ()  ()   ()   ()   ()   ()     ()   ()     ()   ()     ()    ()
      (2)  (3)  (2)  (5)  (2)    (7)  (2)    (3)  (2)    (11)  (2)
                (4)       (3)         (4)    (9)  (5)          (3)
                          (6)         (8)         (10)         (4)
                          (2*3)       (2*4)       (2*5)        (6)
                                                               (12)
                                                               (2*3)
                                                               (2*6)
                                                               (3*4)
		

Crossrefs

A version for partitions is A026906 (strict partitions of 1..n).
A version for partitions is A036469 (strict partitions of 0..n).
A version for partitions is A047966 (strict partitions of divisors).
The non-strict version is A057567.
A000005 counts divisors, with sum A000203.
A000009 counts strict partitions.
A001055 counts factorizations, with strict case A045778.
A001221 counts prime divisors, with sum A001414.
A001222 counts prime-power divisors.
A005117 lists squarefree numbers.

Programs

  • Maple
    sf1:= proc(n,m)
      local D,d;
      if n = 1 then return 1 fi;
      D:= select(`<`,numtheory:-divisors(n) minus {1},m);
      add( procname(n/d,d), d= D)
    end proc:
    sf:= proc(n) option remember; sf1(n,n+1) end proc:f:= proc(n) local d; add(sf(d),d=numtheory:-divisors(n)) end proc:map(f, [$1..100]); # Robert Israel, Mar 10 2021
  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Sum[Length[Select[facs[k],UnsameQ@@#&]],{k,Divisors[n]}],{n,30}]

A340852 Numbers that can be factored in such a way that every factor is a divisor of the number of factors.

Original entry on oeis.org

1, 4, 16, 27, 32, 64, 96, 128, 144, 192, 216, 256, 288, 324, 432, 486, 512, 576, 648, 729, 864, 972, 1024, 1296, 1458, 1728, 1944, 2048, 2560, 2592, 2916, 3125, 3888, 4096, 5120, 5184, 5832, 6144, 6400, 7776, 8192, 9216, 11664, 12288, 12800, 13824, 15552
Offset: 1

Views

Author

Gus Wiseman, Feb 04 2021

Keywords

Comments

Also numbers that can be factored in such a way that the length is divisible by the least common multiple.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    4: {1,1}
   16: {1,1,1,1}
   27: {2,2,2}
   32: {1,1,1,1,1}
   64: {1,1,1,1,1,1}
   96: {1,1,1,1,1,2}
  128: {1,1,1,1,1,1,1}
  144: {1,1,1,1,2,2}
  192: {1,1,1,1,1,1,2}
  216: {1,1,1,2,2,2}
  256: {1,1,1,1,1,1,1,1}
  288: {1,1,1,1,1,2,2}
  324: {1,1,2,2,2,2}
  432: {1,1,1,1,2,2,2}
For example, 24576 has three suitable factorizations:
  (2*2*2*2*2*2*2*2*2*2*2*12)
  (2*2*2*2*2*2*2*2*2*2*4*6)
  (2*2*2*2*2*2*2*2*2*3*4*4)
so is in the sequence.
		

Crossrefs

Partitions of this type are counted by A340693 (A340606).
These factorizations are counted by A340851.
The reciprocal version is A340853.
A143773 counts partitions whose parts are multiples of the number of parts.
A320911 can be factored into squarefree semiprimes.
A340597 have an alt-balanced factorization.
A340656 lack a twice-balanced factorization, complement A340657.
- Factorizations -
A001055 counts factorizations, with strict case A045778.
A316439 counts factorizations by product and length.
A339846 counts factorizations of even length.
A339890 counts factorizations of odd length.
A340101 counts factorizations into odd factors, odd-length case A340102.
A340653 counts balanced factorizations.
A340831/A340832 count factorizations with odd maximum/minimum.
A340785 counts factorizations into even numbers, even-length case A340786.
A340854 cannot be factored with odd least factor, complement A340855.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[1000],Select[facs[#],And@@IntegerQ/@(Length[#]/#)&]!={}&]

A340830 Number of strict integer partitions of n such that every part is a multiple of the number of parts.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 3, 1, 4, 1, 4, 1, 6, 1, 5, 2, 6, 1, 8, 1, 7, 4, 7, 1, 12, 1, 8, 6, 9, 1, 16, 1, 10, 9, 11, 1, 21, 1, 12, 13, 12, 1, 28, 1, 13, 17, 16, 1, 33, 1, 19, 22, 15, 1, 45, 1, 16, 28, 25, 1, 47, 1, 28, 34, 18
Offset: 1

Views

Author

Gus Wiseman, Feb 02 2021

Keywords

Examples

			The a(n) partitions for n = 1, 6, 10, 14, 18, 20, 24, 26, 30:
  1   6     10    14     18      20     24       26      30
      4,2   6,4   8,6    10,8    12,8   16,8     18,8    22,8
            8,2   10,4   12,6    14,6   18,6     20,6    24,6
                  12,2   14,4    16,4   20,4     22,4    26,4
                         16,2    18,2   22,2     24,2    28,2
                         9,6,3          14,10    14,12   16,14
                                        12,9,3   16,10   18,12
                                        15,6,3           20,10
                                                         15,9,6
                                                         18,9,3
                                                         21,6,3
                                                         15,12,3
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
The non-strict case is A143773 (A316428).
The case where length divides sum also is A340827.
The version for factorizations is A340851.
Factorization of this type are counted by A340853.
A018818 counts partitions into divisors (A326841).
A047993 counts balanced partitions (A106529).
A067538 counts partitions whose length/max divide sum (A316413/A326836).
A072233 counts partitions by sum and length, with strict case A008289.
A102627 counts strict partitions whose length divides sum.
A326850 counts strict partitions whose maximum part divides sum.
A326851 counts strict partitions with length and maximum dividing sum.
A340828 counts strict partitions with length divisible by maximum.
A340829 counts strict partitions with Heinz number divisible by sum.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&And@@IntegerQ/@(#/Length[#])&]],{n,30}]

Formula

a(n) = Sum_{d|n} A008289(n/d, d).

A340827 Number of strict integer partitions of n into divisors of n whose length also divides n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 5, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 5, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 25, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 18, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 17, 1, 1, 1, 1, 1, 14, 1, 1, 1, 1, 1, 12, 1, 1, 1, 3, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Feb 01 2021

Keywords

Comments

The first element not in A326715 that is however a Heinz number of these partitions is 273.

Examples

			The a(n) partitions for n = 6, 12, 24, 90, 84:
  6       12        24            90                      84
  3,2,1   6,4,2     12,8,4        45,30,15                42,28,14
          6,3,2,1   12,6,4,2      45,30,9,5,1             42,21,14,7
                    12,8,3,1      45,18,15,9,3            42,28,12,2
                    8,6,4,3,2,1   45,30,10,3,2            42,28,6,4,3,1
                                  45,18,15,10,2           42,28,7,4,2,1
                                  45,30,6,5,3,1           42,14,12,7,6,3
                                  45,30,9,3,2,1           42,21,12,4,3,2
                                  45,15,10,9,6,5          42,21,12,6,2,1
                                  45,18,10,9,5,3          42,21,14,4,2,1
                                  45,18,10,9,6,2          28,21,14,12,6,3
                                  45,18,15,6,5,1          28,21,14,12,7,2
                                  45,18,15,9,2,1          42,21,7,6,4,3,1
                                  30,18,15,10,6,5,3,2,1   42,14,12,7,4,3,2
                                                          42,14,12,7,6,2,1
                                                          28,21,14,12,4,3,2
                                                          28,21,14,12,6,2,1
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
The non-strict case is A326842 (A326847).
A018818 = partitions using divisors (A326841).
A047993 = balanced partitions (A106529).
A067538 = partitions whose length/maximum divides sum (A316413/A326836).
A072233 = partitions by sum and length, with strict case A008289.
A102627 = strict partitions whose length divides sum.
A326850 = strict partitions whose maximum part divides sum.
A326851 = strict partitions w/ length and max dividing sum.
A340828 = strict partitions w/ length divisible by max.
A340829 = strict partitions w/ Heinz number divisible by sum.
A340830 = strict partitions w/ parts divisible by length.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n,All,Divisors[n]],UnsameQ@@#&&Divisible[n,Length[#]]&]],{n,30}]
  • PARI
    A340827(n, divsleft=List(divisors(n)), rest=n, len=0) = if(rest<=0, !rest && !(n%len), my(s=0, d); forstep(i=#divsleft, 1, -1, d = divsleft[i]; listpop(divsleft,i); if(rest>=d, s += A340827(n, divsleft, rest-d, 1+len))); (s)); \\ Antti Karttunen, Feb 22 2023
    
  • Scheme
    ;; See the Links-section. - Antti Karttunen, Feb 22 2023

Extensions

Data section extended up to a(105) by Antti Karttunen, Feb 22 2023

A340851 Number of factorizations of n such that every factor is a divisor of the number of factors.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Feb 04 2021

Keywords

Comments

Also factorizations whose number of factors is divisible by their least common multiple.

Examples

			The a(n) factorizations for n = 8192, 46656, 73728:
  2*2*2*2*2*4*8*8          6*6*6*6*6*6              2*2*2*2*2*2*2*2*2*4*6*6
  2*2*2*2*4*4*4*8          2*2*2*2*2*2*3*3*3*3*3*3  2*2*2*2*2*2*2*2*3*4*4*6
  2*2*2*4*4*4*4*4                                   2*2*2*2*2*2*2*3*3*4*4*4
  2*2*2*2*2*2*2*2*2*2*2*4                           2*2*2*2*2*2*2*2*2*2*6*12
                                                    2*2*2*2*2*2*2*2*2*3*4*12
		

Crossrefs

The version for partitions is A340693, with reciprocal version A143773.
Positions of nonzero terms are A340852.
The reciprocal version is A340853.
A320911 can be factored into squarefree semiprimes.
A340597 have an alt-balanced factorization.
A340656 lack a twice-balanced factorization, complement A340657.
- Factorizations -
A001055 counts factorizations, with strict case A045778.
A316439 counts factorizations by product and length.
A339846 counts factorizations of even length.
A339890 counts factorizations of odd length.
A340101 counts factorizations into odd factors, odd-length case A340102.
A340653 counts balanced factorizations.
A340785 counts factorizations into even numbers, even-length case A340786.
A340831/A340832 count factorizations with odd maximum/minimum.
A340854 cannot be factored with odd least factor, complement A340855.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],And@@IntegerQ/@(Length[#]/#)&]],{n,100}]

A340693 Number of integer partitions of n where each part is a divisor of the number of parts.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 2, 5, 5, 7, 7, 10, 10, 14, 14, 17, 19, 24, 24, 32, 33, 42, 43, 58, 59, 75, 79, 98, 104, 124, 128, 156, 166, 196, 204, 239, 251, 292, 306, 352, 372, 426, 445, 514, 543, 616, 652, 745, 790, 896, 960, 1080, 1162, 1311, 1400, 1574, 1692, 1892
Offset: 0

Views

Author

Gus Wiseman, Jan 23 2021

Keywords

Comments

The only strict partitions counted are (), (1), and (2,1).
Is there a simple generating function?

Examples

			The a(1) = 1 through a(9) = 7 partitions:
  1  11  21   22    311    2211    331      2222      333
         111  1111  2111   111111  2221     4211      4221
                    11111          4111     221111    51111
                                   211111   311111    222111
                                   1111111  11111111  321111
                                                      21111111
                                                      111111111
		

Crossrefs

Note: Heinz numbers are given in parentheses below.
The reciprocal version is A143773 (A316428), with strict case A340830.
The case where length also divides n is A326842 (A326847).
The Heinz numbers of these partitions are A340606.
The version for factorizations is A340851, with reciprocal version A340853.
A018818 counts partitions of n into divisors of n (A326841).
A047993 counts balanced partitions (A106529).
A067538 counts partitions of n whose length/max divides n (A316413/A326836).
A067539 counts partitions with integer geometric mean (A326623).
A072233 counts partitions by sum and length.
A168659 = partitions whose greatest part divides their length (A340609).
A168659 = partitions whose length divides their greatest part (A340610).
A326843 = partitions of n whose length and maximum both divide n (A326837).
A330950 = partitions of n whose Heinz number is divisible by n (A324851).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And@@IntegerQ/@(Length[#]/#)&]],{n,0,30}]
Showing 1-8 of 8 results.