cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A067538 Number of partitions of n in which the number of parts divides n.

Original entry on oeis.org

1, 2, 2, 4, 2, 8, 2, 11, 9, 14, 2, 46, 2, 24, 51, 66, 2, 126, 2, 202, 144, 69, 2, 632, 194, 116, 381, 756, 2, 1707, 2, 1417, 956, 316, 2043, 5295, 2, 511, 2293, 9151, 2, 10278, 2, 8409, 14671, 1280, 2, 36901, 8035, 21524, 11614, 25639, 2, 53138, 39810, 85004
Offset: 1

Views

Author

Naohiro Nomoto, Jan 27 2002

Keywords

Comments

Also sum of p(n,d) over the divisors d of n, where p(n,m) is the count of partitions of n in exactly m parts. - Wouter Meeussen, Jun 07 2009
From Gus Wiseman, Sep 24 2019: (Start)
Also the number of integer partitions of n whose maximum part divides n. The Heinz numbers of these partitions are given by A326836. For example, the a(1) = 1 through a(8) = 11 partitions are:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (11111) (33) (1111111) (44)
(211) (222) (422)
(1111) (321) (431)
(2211) (2222)
(3111) (4211)
(21111) (22211)
(111111) (41111)
(221111)
(2111111)
(11111111)
(End)

Examples

			a(3)=2 because 3 is a prime; a(4)=4 because the five partitions of 4 are {4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}, and the number of parts in each of them divides 4 except for {2, 1, 1}.
From _Gus Wiseman_, Sep 24 2019: (Start)
The a(1) = 1 through a(8) = 11 partitions whose length divides their sum are the following. The Heinz numbers of these partitions are given by A316413.
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (11111)  (33)      (1111111)  (44)
                    (31)             (42)                 (53)
                    (1111)           (51)                 (62)
                                     (222)                (71)
                                     (321)                (2222)
                                     (411)                (3221)
                                     (111111)             (3311)
                                                          (4211)
                                                          (5111)
                                                          (11111111)
(End)
		

Crossrefs

The strict case is A102627.
Partitions with integer geometric mean are A067539.

Programs

  • Mathematica
    Do[p = IntegerPartitions[n]; l = Length[p]; c = 0; k = 1; While[k < l + 1, If[ IntegerQ[ n/Length[ p[[k]] ]], c++ ]; k++ ]; Print[c], {n, 1, 57}, All]
    p[n_,k_]:=p[n,k]=p[n-1,k-1]+p[n-k,k];p[n_,k_]:=0/;k>n;p[n_,n_]:=1;p[n_,0]:=0
    Table[Plus @@ (p[n,# ]&/ @ Divisors[n]),{n,36}] (* Wouter Meeussen, Jun 07 2009 *)
    Table[Count[IntegerPartitions[n], q_ /; IntegerQ[Mean[q]]], {n, 50}]  (*Clark Kimberling, Apr 23 2019 *)
  • PARI
    a(n) = {my(nb = 0); forpart(p=n, if ((vecsum(Vec(p)) % #p) == 0, nb++);); nb;} \\ Michel Marcus, Jul 03 2018
    
  • Python
    # uses A008284_T
    from sympy import divisors
    def A067538(n): return sum(A008284_T(n,d) for d in divisors(n,generator=True)) # Chai Wah Wu, Sep 21 2023

Formula

a(p) = 2 for all primes p.

Extensions

Extended by Robert G. Wilson v, Oct 16 2002

A102627 Number of partitions of n into distinct parts in which the number of parts divides n.

Original entry on oeis.org

1, 1, 1, 2, 1, 4, 1, 4, 4, 5, 1, 15, 1, 7, 14, 17, 1, 28, 1, 40, 28, 11, 1, 99, 31, 13, 49, 99, 1, 186, 1, 152, 76, 17, 208, 425, 1, 19, 109, 699, 1, 584, 1, 433, 823, 23, 1, 1625, 437, 1140, 193, 746, 1, 2003, 1748, 2749, 244, 29, 1, 7404, 1, 31, 4158, 3258, 3766, 6307, 1
Offset: 1

Views

Author

Vladeta Jovovic, Feb 01 2005

Keywords

Examples

			From _Gus Wiseman_, Sep 24 2019: (Start)
The a(1) = 1 through a(12) = 15 strict integer partitions whose average is an integer (A = 10, B = 11, C = 12):
  (1)  (2)  (3)  (4)   (5)  (6)    (7)  (8)   (9)    (A)   (B)  (C)
                 (31)       (42)        (53)  (432)  (64)       (75)
                            (51)        (62)  (531)  (73)       (84)
                            (321)       (71)  (621)  (82)       (93)
                                                     (91)       (A2)
                                                                (B1)
                                                                (543)
                                                                (642)
                                                                (651)
                                                                (732)
                                                                (741)
                                                                (831)
                                                                (921)
                                                                (5421)
                                                                (6321)
(End)
		

Crossrefs

The BI-numbers of these partitions are given by A326669 (numbers whose binary indices have integer mean).
The non-strict case is A067538.
Strict partitions with integer geometric mean are A326625.
Strict partitions whose maximum divides their sum are A326850.

Programs

  • Maple
    a:= proc(m) option remember; local b; b:=
          proc(n, i, t) option remember; `if`(i*(i+1)/2Alois P. Heinz, Sep 25 2019
  • Mathematica
    npdp[n_]:=Count[Select[IntegerPartitions[n],Length[#]==Length[ Union[ #]]&], ?(Divisible[n,Length[#]]&)]; Array[npdp,70] (* _Harvey P. Dale, Feb 12 2016 *)
    a[m_] := a[m] = Module[{b}, b[n_, i_, t_] := b[n, i, t] = If[i(i+1)/2 < n, 0, If[n == 0, If[Mod[m, t] == 0, 1, 0], b[n, i - 1, t] + b[n - i, Min[n - i, i - 1], t + 1]]]; If[PrimeQ[m], 1, b[m, m, 0]]];
    Array[a, 100] (* Jean-François Alcover, May 21 2021, after Alois P. Heinz *)

A326836 Heinz numbers of integer partitions whose maximum part divides their sum.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 23, 25, 27, 29, 30, 31, 32, 36, 37, 40, 41, 43, 47, 48, 49, 53, 59, 61, 63, 64, 67, 70, 71, 73, 79, 81, 83, 84, 89, 97, 101, 103, 107, 108, 109, 112, 113, 121, 125, 127, 128, 131, 135, 137, 139, 144, 149, 150, 151
Offset: 1

Views

Author

Gus Wiseman, Jul 26 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers whose maximum prime index divides their sum of prime indices.
The enumeration of these partitions by sum is given by A067538.

Examples

			The sequence of terms together with their prime indices begins:
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   11: {5}
   12: {1,1,2}
   13: {6}
   16: {1,1,1,1}
   17: {7}
   19: {8}
   23: {9}
   25: {3,3}
   27: {2,2,2}
   29: {10}
   30: {1,2,3}
   31: {11}
   32: {1,1,1,1,1}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[200],Divisible[Total[primeMS[#]],Max[primeMS[#]]]&]

A326837 Heinz numbers of integer partitions whose length and maximum both divide their sum.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 30, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 84, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197
Offset: 1

Views

Author

Gus Wiseman, Jul 26 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The enumeration of these partitions by sum is given by A326843.

Examples

			The sequence of terms together with their prime indices begins:
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   11: {5}
   13: {6}
   16: {1,1,1,1}
   17: {7}
   19: {8}
   23: {9}
   25: {3,3}
   27: {2,2,2}
   29: {10}
   30: {1,2,3}
   31: {11}
   32: {1,1,1,1,1}
   37: {12}
		

Crossrefs

The non-constant case is A326838.
The strict case is A326851.

Programs

  • Maple
    isA326837 := proc(n)
        psigsu := A056239(n) ;
        psigma := A061395(n) ;
        psigle := numtheory[bigomega](n) ;
        if modp(psigsu,psigma) = 0 and modp(psigsu,psigle) = 0 then
            true;
        else
            false;
        end if;
    end proc:
    n := 1:
    for i from 2 to 3000 do
        if isA326837(i) then
            printf("%d %d\n",n,i);
            n := n+1 ;
        end if;
    end do: # R. J. Mathar, Aug 09 2019
  • Mathematica
    Select[Range[2,100],With[{y=Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]},Divisible[Total[y],Max[y]]&&Divisible[Total[y],Length[y]]]&]

A326842 Number of integer partitions of n whose parts all divide n and whose length also divides n.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 5, 2, 5, 3, 5, 2, 21, 2, 5, 6, 9, 2, 22, 2, 21, 6, 5, 2, 134, 3, 5, 6, 23, 2, 157, 2, 27, 6, 5, 6, 478, 2, 5, 6, 208, 2, 224, 2, 31, 63, 5, 2, 1720, 3, 30, 6, 34, 2, 322, 6, 295, 6, 5, 2, 13899, 2, 5, 68, 126, 8, 429, 2, 42, 6, 358, 2, 19959, 2
Offset: 0

Views

Author

Gus Wiseman, Jul 26 2019

Keywords

Comments

The Heinz numbers of these partitions are given by A326847.

Examples

			The a(1) = 1 through a(8) = 5 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (11111)  (33)      (1111111)  (44)
                    (1111)           (222)                (2222)
                                     (321)                (4211)
                                     (111111)             (11111111)
The a(12) = 21 partitions:
  (12)
  (6,6)
  (4,4,4)
  (6,3,3)
  (6,4,2)
  (3,3,3,3)
  (4,3,3,2)
  (4,4,2,2)
  (4,4,3,1)
  (6,2,2,2)
  (6,3,2,1)
  (6,4,1,1)
  (2,2,2,2,2,2)
  (3,2,2,2,2,1)
  (3,3,2,2,1,1)
  (3,3,3,1,1,1)
  (4,2,2,2,1,1)
  (4,3,2,1,1,1)
  (4,4,1,1,1,1)
  (6,2,1,1,1,1)
  (1,1,1,1,1,1,1,1,1,1,1,1)
		

Crossrefs

Partitions using divisors are A018818.
Partitions whose length divides their sum are A067538.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n,All,Divisors[n]],Divisible[n,Length[#]]&]],{n,1,30}]

A326849 Number of integer partitions of n whose length times maximum is a multiple of n.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 6, 2, 5, 5, 10, 2, 19, 2, 18, 26, 24, 2, 55, 2, 87, 82, 60, 2, 207, 86, 106, 192, 363, 2, 668, 2, 527, 616, 304, 928, 1827, 2, 498, 1518, 3229, 2, 4294, 2, 4445, 6307, 1266, 2, 11560, 3629, 8280, 7802, 13633, 2, 19120, 18938, 31385, 16618, 4584
Offset: 0

Views

Author

Gus Wiseman, Jul 26 2019

Keywords

Comments

The Heinz numbers of these partitions are given by A326848.

Examples

			The a(1) = 1 through a(9) = 5 partitions:
  1   2    3     4      5       6        7         8          9
      11   111   22     11111   33       1111111   44         333
                 1111           222                2222       621
                                411                4211       321111
                                3111               11111111   111111111
                                111111
For example, (4,1,1) is such a partition because its length times maximum is 3 * 4 = 12, which is a multiple of 6.
		

Crossrefs

Programs

  • Mathematica
    Table[If[n==0,1,Length[Select[IntegerPartitions[n],Divisible[Max[#]*Length[#],n]&]]],{n,0,30}]

A326851 Number of strict integer partitions of n whose length and maximum both divide n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 2, 3, 1, 5, 1, 6, 1, 1, 1, 16, 1, 1, 1, 12, 1, 33, 1, 15, 1, 1, 1, 60, 1, 1, 1, 51, 1, 81, 1, 31, 57, 1, 1, 216, 1, 55, 1, 45, 1, 230, 1, 223, 1, 1, 1, 800, 1, 1, 314, 273, 1, 607, 1, 81, 1, 315, 1, 2404, 1, 1, 319
Offset: 0

Views

Author

Gus Wiseman, Jul 26 2019

Keywords

Examples

			The a(6) = 2 through a(24) = 16 partitions (1 terms not shown):
  6       12        15          16        18      20           24
  3,2,1   6,4,2     5,4,3,2,1   8,4,3,1   9,5,4   10,5,3,2     12,7,5
          6,5,1                 8,5,2,1   9,6,3   10,5,4,1     12,8,4
          6,3,2,1                         9,7,2   10,6,3,1     12,9,3
                                          9,8,1   10,7,2,1     12,10,2
                                                  10,4,3,2,1   12,11,1
                                                               8,7,5,4
                                                               8,7,6,3
                                                               12,5,4,3
                                                               12,6,4,2
                                                               12,6,5,1
                                                               12,7,3,2
                                                               12,7,4,1
                                                               12,8,3,1
                                                               12,9,2,1
                                                               8,6,4,3,2,1
		

Crossrefs

The non-strict case is A326843.

Programs

  • Mathematica
    Table[If[n==0,1,Length[Select[IntegerPartitions[n],UnsameQ@@#&&Divisible[n,Max[#]]&&Divisible[n,Length[#]]&]]],{n,0,30}]

A326848 Heinz numbers of integer partitions of m >= 0 whose length times maximum is a multiple of m.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 78, 79, 81, 83, 84, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 171, 173, 179, 181
Offset: 1

Views

Author

Gus Wiseman, Jul 26 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The enumeration of these partitions by sum is given by A326849.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   11: {5}
   13: {6}
   16: {1,1,1,1}
   17: {7}
   19: {8}
   23: {9}
   25: {3,3}
   27: {2,2,2}
   28: {1,1,4}
   29: {10}
   31: {11}
   32: {1,1,1,1,1}
   37: {12}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],#==1||Divisible[Max[primeMS[#]]*Length[primeMS[#]],Total[primeMS[#]]]&]

A326850 Number of strict integer partitions of n whose maximum part divides n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 4, 1, 5, 2, 6, 1, 10, 1, 10, 5, 12, 1, 23, 1, 18, 15, 23, 1, 49, 1, 34, 36, 38, 1, 106, 1, 54, 79, 81, 1, 189, 1, 124, 162, 104, 1, 412, 1, 145, 307, 289, 1, 608, 12, 437, 559, 256, 1, 1432, 1, 340, 981, 976, 79, 1730, 1
Offset: 0

Views

Author

Gus Wiseman, Jul 28 2019

Keywords

Examples

			The initial terms count the following partitions:
   1: (1)
   2: (2)
   3: (3)
   4: (4)
   5: (5)
   6: (6)
   6: (3,2,1)
   7: (7)
   8: (8)
   8: (4,3,1)
   9: (9)
  10: (10)
  10: (5,4,1)
  10: (5,3,2)
  11: (11)
  12: (12)
  12: (6,5,1)
  12: (6,4,2)
  12: (6,3,2,1)
  13: (13)
  14: (14)
  14: (7,6,1)
  14: (7,5,2)
  14: (7,4,3)
  14: (7,4,2,1)
  15: (15)
  15: (5,4,3,2,1)
		

Crossrefs

Positions of 1's appear to be A308168.
The non-strict case is given by A067538.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Divisible[n,Max[#]]&]],{n,0,30}]

A340828 Number of strict integer partitions of n whose maximum part is a multiple of their length.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 3, 2, 4, 5, 6, 6, 7, 8, 11, 10, 13, 17, 18, 21, 24, 27, 30, 35, 39, 46, 53, 61, 68, 79, 87, 97, 110, 123, 139, 157, 175, 196, 222, 247, 278, 312, 347, 385, 433, 476, 531, 586, 651, 720, 800, 883, 979, 1085, 1200, 1325, 1464, 1614, 1777
Offset: 1

Views

Author

Gus Wiseman, Feb 01 2021

Keywords

Examples

			The a(1) = 1 through a(16) = 10 partitions (A..G = 10..16):
  1  2  3   4  5   6    7   8   9    A     B    C    D    E     F      G
        21     41  42   43  62  63   64    65   84   85   86    87     A6
                   321  61      81   82    83   A2   A3   A4    A5     C4
                                621  631   A1   642  C1   C2    C3     E2
                                     4321  632  651  643  653   E1     943
                                           641  921  652  932   654    952
                                                     931  941   942    961
                                                          8321  951    C31
                                                                C21    8431
                                                                8421   8521
                                                                54321
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
The non-strict version is A168659 (A340609/A340610).
A018818 counts partitions into divisors (A326841).
A047993 counts balanced partitions (A106529).
A064173 counts partitions of positive/negative rank (A340787/A340788).
A067538 counts partitions whose length/max divides sum (A316413/A326836).
A072233 counts partitions by sum and length, with strict case A008289.
A096401 counts strict partition with length equal to minimum.
A102627 counts strict partitions with length dividing sum.
A326842 counts partitions whose length and parts all divide sum (A326847).
A326850 counts strict partitions whose maximum part divides sum.
A326851 counts strict partitions with length and maximum dividing sum.
A340829 counts strict partitions with Heinz number divisible by sum.
A340830 counts strict partitions with all parts divisible by length.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Divisible[Max@@#,Length[#]]&]],{n,30}]
Showing 1-10 of 20 results. Next