cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A349156 Number of integer partitions of n whose mean is not an integer.

Original entry on oeis.org

1, 0, 0, 1, 1, 5, 3, 13, 11, 21, 28, 54, 31, 99, 111, 125, 165, 295, 259, 488, 425, 648, 933, 1253, 943, 1764, 2320, 2629, 2962, 4563, 3897, 6840, 6932, 9187, 11994, 12840, 12682, 21635, 25504, 28892, 28187, 44581, 42896, 63259, 66766, 74463, 104278, 124752
Offset: 0

Views

Author

Gus Wiseman, Nov 14 2021

Keywords

Comments

Equivalently, partitions whose length does not divide their sum.
By conjugation, also the number of integer partitions of n with greatest part not dividing n.

Examples

			The a(3) = 1 through a(8) = 11 partitions:
  (21)  (211)  (32)    (2211)   (43)      (332)
               (41)    (3111)   (52)      (422)
               (221)   (21111)  (61)      (431)
               (311)            (322)     (521)
               (2111)           (331)     (611)
                                (421)     (22211)
                                (511)     (32111)
                                (2221)    (41111)
                                (3211)    (221111)
                                (4111)    (311111)
                                (22111)   (2111111)
                                (31111)
                                (211111)
		

Crossrefs

Below, "!" means either enumerative or set theoretical complement.
The version for nonempty subsets is !A051293.
The complement is counted by A067538, ranked by A316413.
The geometric version is !A067539, strict !A326625, ranked by !A326623.
The strict case is !A102627.
The version for prime factors is A175352, complement A078175.
The version for distinct prime factors is A176587, complement A078174.
The ordered version (compositions) is !A271654, ranked by !A096199.
The multiplicative version (factorizations) is !A326622, geometric !A326028.
The conjugate is ranked by !A326836.
The conjugate strict version is !A326850.
These partitions are ranked by A348551.
A000041 counts integer partitions.
A326567/A326568 give the mean of prime indices, conjugate A326839/A326840.
A236634 counts unbalanced partitions, complement of A047993.
A327472 counts partitions not containing their mean, complement of A237984.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!IntegerQ[Mean[#]]&]],{n,0,30}]

Formula

a(n > 0) = A000041(n) - A067538(n).

A326841 Heinz numbers of integer partitions of m >= 0 using divisors of m.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 23, 25, 27, 29, 30, 31, 32, 36, 37, 40, 41, 43, 47, 48, 49, 53, 59, 61, 63, 64, 67, 71, 73, 79, 81, 83, 84, 89, 97, 101, 103, 107, 108, 109, 112, 113, 121, 125, 127, 128, 131, 137, 139, 144, 149, 151, 157, 163
Offset: 1

Views

Author

Gus Wiseman, Jul 26 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The enumeration of these partitions by sum is given by A018818.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   11: {5}
   12: {1,1,2}
   13: {6}
   16: {1,1,1,1}
   17: {7}
   19: {8}
   23: {9}
   25: {3,3}
   27: {2,2,2}
   29: {10}
   30: {1,2,3}
   31: {11}
		

Crossrefs

The case where the length also divides m is A326847.

Programs

  • Maple
    isA326841 := proc(n)
        local ifs,psigsu,p,psig ;
        psigsu := A056239(n) ;
        for ifs in ifactors(n)[2] do
            p := op(1,ifs) ;
            psig := numtheory[pi](p) ;
            if modp(psigsu,psig) <> 0 then
                return false;
            end if;
        end do:
        true;
    end proc:
    for i from 1 to 3000 do
        if isA326841(i) then
            printf("%d %d\n",n,i);
            n := n+1 ;
        end if;
    end do: # R. J. Mathar, Aug 09 2019
  • Mathematica
    Select[Range[100],With[{y=If[#==1,{},Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]},And@@IntegerQ/@(Total[y]/y)]&]

A326843 Number of integer partitions of n whose length and maximum both divide n.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 5, 2, 5, 3, 5, 2, 22, 2, 5, 11, 16, 2, 36, 2, 46, 22, 5, 2, 209, 3, 5, 42, 130, 2, 434, 2, 217, 77, 5, 52, 1400, 2, 5, 135, 1749, 2, 1782, 2, 957, 2151, 5, 2, 8355, 3, 1859, 385, 2388, 2, 6726, 2765, 10641, 627, 5, 2, 68049, 2, 5, 13424, 17142
Offset: 0

Views

Author

Gus Wiseman, Jul 26 2019

Keywords

Comments

The Heinz numbers of these partitions are given by A326837.

Examples

			The a(1) = 1 through a(8) = 5 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (11111)  (33)      (1111111)  (44)
                    (1111)           (222)                (2222)
                                     (321)                (4211)
                                     (111111)             (11111111)
The a(12) = 22 partitions:
  (12)
  (6,6)
  (4,4,4)
  (6,3,3)
  (6,4,2)
  (6,5,1)
  (3,3,3,3)
  (4,3,3,2)
  (4,4,2,2)
  (4,4,3,1)
  (6,2,2,2)
  (6,3,2,1)
  (6,4,1,1)
  (2,2,2,2,2,2)
  (3,2,2,2,2,1)
  (3,3,2,2,1,1)
  (3,3,3,1,1,1)
  (4,2,2,2,1,1)
  (4,3,2,1,1,1)
  (4,4,1,1,1,1)
  (6,2,1,1,1,1)
  (1,1,1,1,1,1,1,1,1,1,1,1)
		

Crossrefs

The strict case is A326851.
The non-constant case is A326852.
The case where all parts (not just the maximum) divide n is A326842.

Programs

  • Mathematica
    Table[If[n==0,1,Length[Select[IntegerPartitions[n],Divisible[n,Length[#]]&&Divisible[n,Max[#]]&]]],{n,0,30}]

A326849 Number of integer partitions of n whose length times maximum is a multiple of n.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 6, 2, 5, 5, 10, 2, 19, 2, 18, 26, 24, 2, 55, 2, 87, 82, 60, 2, 207, 86, 106, 192, 363, 2, 668, 2, 527, 616, 304, 928, 1827, 2, 498, 1518, 3229, 2, 4294, 2, 4445, 6307, 1266, 2, 11560, 3629, 8280, 7802, 13633, 2, 19120, 18938, 31385, 16618, 4584
Offset: 0

Views

Author

Gus Wiseman, Jul 26 2019

Keywords

Comments

The Heinz numbers of these partitions are given by A326848.

Examples

			The a(1) = 1 through a(9) = 5 partitions:
  1   2    3     4      5       6        7         8          9
      11   111   22     11111   33       1111111   44         333
                 1111           222                2222       621
                                411                4211       321111
                                3111               11111111   111111111
                                111111
For example, (4,1,1) is such a partition because its length times maximum is 3 * 4 = 12, which is a multiple of 6.
		

Crossrefs

Programs

  • Mathematica
    Table[If[n==0,1,Length[Select[IntegerPartitions[n],Divisible[Max[#]*Length[#],n]&]]],{n,0,30}]

A326851 Number of strict integer partitions of n whose length and maximum both divide n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 2, 3, 1, 5, 1, 6, 1, 1, 1, 16, 1, 1, 1, 12, 1, 33, 1, 15, 1, 1, 1, 60, 1, 1, 1, 51, 1, 81, 1, 31, 57, 1, 1, 216, 1, 55, 1, 45, 1, 230, 1, 223, 1, 1, 1, 800, 1, 1, 314, 273, 1, 607, 1, 81, 1, 315, 1, 2404, 1, 1, 319
Offset: 0

Views

Author

Gus Wiseman, Jul 26 2019

Keywords

Examples

			The a(6) = 2 through a(24) = 16 partitions (1 terms not shown):
  6       12        15          16        18      20           24
  3,2,1   6,4,2     5,4,3,2,1   8,4,3,1   9,5,4   10,5,3,2     12,7,5
          6,5,1                 8,5,2,1   9,6,3   10,5,4,1     12,8,4
          6,3,2,1                         9,7,2   10,6,3,1     12,9,3
                                          9,8,1   10,7,2,1     12,10,2
                                                  10,4,3,2,1   12,11,1
                                                               8,7,5,4
                                                               8,7,6,3
                                                               12,5,4,3
                                                               12,6,4,2
                                                               12,6,5,1
                                                               12,7,3,2
                                                               12,7,4,1
                                                               12,8,3,1
                                                               12,9,2,1
                                                               8,6,4,3,2,1
		

Crossrefs

The non-strict case is A326843.

Programs

  • Mathematica
    Table[If[n==0,1,Length[Select[IntegerPartitions[n],UnsameQ@@#&&Divisible[n,Max[#]]&&Divisible[n,Length[#]]&]]],{n,0,30}]

A340828 Number of strict integer partitions of n whose maximum part is a multiple of their length.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 3, 2, 4, 5, 6, 6, 7, 8, 11, 10, 13, 17, 18, 21, 24, 27, 30, 35, 39, 46, 53, 61, 68, 79, 87, 97, 110, 123, 139, 157, 175, 196, 222, 247, 278, 312, 347, 385, 433, 476, 531, 586, 651, 720, 800, 883, 979, 1085, 1200, 1325, 1464, 1614, 1777
Offset: 1

Views

Author

Gus Wiseman, Feb 01 2021

Keywords

Examples

			The a(1) = 1 through a(16) = 10 partitions (A..G = 10..16):
  1  2  3   4  5   6    7   8   9    A     B    C    D    E     F      G
        21     41  42   43  62  63   64    65   84   85   86    87     A6
                   321  61      81   82    83   A2   A3   A4    A5     C4
                                621  631   A1   642  C1   C2    C3     E2
                                     4321  632  651  643  653   E1     943
                                           641  921  652  932   654    952
                                                     931  941   942    961
                                                          8321  951    C31
                                                                C21    8431
                                                                8421   8521
                                                                54321
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
The non-strict version is A168659 (A340609/A340610).
A018818 counts partitions into divisors (A326841).
A047993 counts balanced partitions (A106529).
A064173 counts partitions of positive/negative rank (A340787/A340788).
A067538 counts partitions whose length/max divides sum (A316413/A326836).
A072233 counts partitions by sum and length, with strict case A008289.
A096401 counts strict partition with length equal to minimum.
A102627 counts strict partitions with length dividing sum.
A326842 counts partitions whose length and parts all divide sum (A326847).
A326850 counts strict partitions whose maximum part divides sum.
A326851 counts strict partitions with length and maximum dividing sum.
A340829 counts strict partitions with Heinz number divisible by sum.
A340830 counts strict partitions with all parts divisible by length.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Divisible[Max@@#,Length[#]]&]],{n,30}]

A326847 Heinz numbers of integer partitions of m >= 0 using divisors of m whose length also divides m.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 30, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 84, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197
Offset: 1

Views

Author

Gus Wiseman, Jul 26 2019

Keywords

Comments

First differs from A071139, A089352 and A086486 in lacking 60. First differs from A326837 in lacking 268.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The enumeration of these partitions by sum is given by A326842.

Examples

			The sequence of terms together with their prime indices begins:
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   7: {4}
   8: {1,1,1}
   9: {2,2}
  11: {5}
  13: {6}
  16: {1,1,1,1}
  17: {7}
  19: {8}
  23: {9}
  25: {3,3}
  27: {2,2,2}
  29: {10}
  30: {1,2,3}
  31: {11}
  32: {1,1,1,1,1}
  37: {12}
		

Crossrefs

Programs

  • Maple
    isA326847 := proc(n)
        psigsu := A056239(n) ;
        for ifs in ifactors(n)[2] do
            p := op(1,ifs) ;
            psig := numtheory[pi](p) ;
            if modp(psigsu,psig) <> 0 then
                return false;
            end if;
        end do:
        psigle := numtheory[bigomega](n) ;
        if modp(psigsu,psigle) = 0 then
            true;
        else
            false;
        end if;
    end proc:
    n := 1:
    for i from 2 to 3000 do
        if isA326847(i) then
            printf("%d %d\n",n,i);
            n := n+1 ;
        end if;
    end do: # R. J. Mathar, Aug 09 2019
  • Mathematica
    Select[Range[2,100],With[{y=Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]},Divisible[Total[y],Length[y]]&&And@@IntegerQ/@(Total[y]/y)]&]

Formula

Intersection of A326841 and A316413.

A340606 Numbers whose prime indices (A112798) are all divisors of the number of prime factors (A001222).

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 16, 20, 24, 32, 36, 50, 54, 56, 64, 81, 84, 96, 125, 126, 128, 144, 160, 176, 189, 196, 216, 240, 256, 294, 324, 360, 384, 400, 416, 441, 486, 512, 540, 576, 600, 624, 686, 729, 810, 864, 896, 900, 936, 968, 1000, 1024, 1029, 1040, 1088, 1215
Offset: 1

Views

Author

Gus Wiseman, Jan 24 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   4: {1,1}
   6: {1,2}
   8: {1,1,1}
   9: {2,2}
  16: {1,1,1,1}
  20: {1,1,3}
  24: {1,1,1,2}
  32: {1,1,1,1,1}
  36: {1,1,2,2}
  50: {1,3,3}
  54: {1,2,2,2}
  56: {1,1,1,4}
  64: {1,1,1,1,1,1}
  81: {2,2,2,2}
  84: {1,1,2,4}
  96: {1,1,1,1,1,2}
		

Crossrefs

Note: Heinz numbers are given in parentheses below.
The reciprocal version is A143773 (A316428).
These partitions are counted by A340693.
A120383 lists numbers divisible by all of their prime indices.
A324850 lists numbers divisible by the product of their prime indices.
A003963 multiplies together the prime indices of n.
A018818 counts partitions of n into divisors of n (A326841).
A047993 counts balanced partitions (A106529).
A067538 counts partitions of n whose length divides n (A316413).
A056239 adds up the prime indices of n.
A061395 selects the maximum prime index.
A067538 counts partitions of n whose maximum divides n (A326836).
A072233 counts partitions by sum and length.
A112798 lists the prime indices of each positive integer.
A168659 = partitions whose length is divisible by their maximum (A340609).
A168659 = partitions whose maximum is divisible by their length (A340610).
A289509 lists numbers with relatively prime prime indices.
A326842 = partitions of n whose length and parts all divide n (A326847).
A326843 = partitions of n whose length and maximum both divide n (A326837).
A340852 have a factorization with factors dividing length.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],And@@IntegerQ/@(PrimeOmega[#]/primeMS[#])&]

A340827 Number of strict integer partitions of n into divisors of n whose length also divides n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 5, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 5, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 25, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 18, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 17, 1, 1, 1, 1, 1, 14, 1, 1, 1, 1, 1, 12, 1, 1, 1, 3, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Feb 01 2021

Keywords

Comments

The first element not in A326715 that is however a Heinz number of these partitions is 273.

Examples

			The a(n) partitions for n = 6, 12, 24, 90, 84:
  6       12        24            90                      84
  3,2,1   6,4,2     12,8,4        45,30,15                42,28,14
          6,3,2,1   12,6,4,2      45,30,9,5,1             42,21,14,7
                    12,8,3,1      45,18,15,9,3            42,28,12,2
                    8,6,4,3,2,1   45,30,10,3,2            42,28,6,4,3,1
                                  45,18,15,10,2           42,28,7,4,2,1
                                  45,30,6,5,3,1           42,14,12,7,6,3
                                  45,30,9,3,2,1           42,21,12,4,3,2
                                  45,15,10,9,6,5          42,21,12,6,2,1
                                  45,18,10,9,5,3          42,21,14,4,2,1
                                  45,18,10,9,6,2          28,21,14,12,6,3
                                  45,18,15,6,5,1          28,21,14,12,7,2
                                  45,18,15,9,2,1          42,21,7,6,4,3,1
                                  30,18,15,10,6,5,3,2,1   42,14,12,7,4,3,2
                                                          42,14,12,7,6,2,1
                                                          28,21,14,12,4,3,2
                                                          28,21,14,12,6,2,1
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
The non-strict case is A326842 (A326847).
A018818 = partitions using divisors (A326841).
A047993 = balanced partitions (A106529).
A067538 = partitions whose length/maximum divides sum (A316413/A326836).
A072233 = partitions by sum and length, with strict case A008289.
A102627 = strict partitions whose length divides sum.
A326850 = strict partitions whose maximum part divides sum.
A326851 = strict partitions w/ length and max dividing sum.
A340828 = strict partitions w/ length divisible by max.
A340829 = strict partitions w/ Heinz number divisible by sum.
A340830 = strict partitions w/ parts divisible by length.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n,All,Divisors[n]],UnsameQ@@#&&Divisible[n,Length[#]]&]],{n,30}]
  • PARI
    A340827(n, divsleft=List(divisors(n)), rest=n, len=0) = if(rest<=0, !rest && !(n%len), my(s=0, d); forstep(i=#divsleft, 1, -1, d = divsleft[i]; listpop(divsleft,i); if(rest>=d, s += A340827(n, divsleft, rest-d, 1+len))); (s)); \\ Antti Karttunen, Feb 22 2023
    
  • Scheme
    ;; See the Links-section. - Antti Karttunen, Feb 22 2023

Extensions

Data section extended up to a(105) by Antti Karttunen, Feb 22 2023

A327778 Number of integer partitions of n whose LCM is a multiple of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 1, 11, 1, 11, 23, 1, 1, 23, 1, 85, 85, 45, 1, 152, 1, 84, 1, 451, 1, 1787, 1, 1, 735, 260, 1925, 1908, 1, 437, 1877, 4623, 1, 14630, 1, 6934, 10519, 1152, 1, 6791, 1, 1817, 10159, 22556, 1, 2819, 47927, 69333, 22010, 4310, 1
Offset: 0

Views

Author

Gus Wiseman, Sep 25 2019

Keywords

Examples

			The partitions of n = 6, 10, 12, and 15 whose LCM is a multiple of n:
  (6)      (10)         (12)             (15)
  (3,2,1)  (5,3,2)      (5,4,3)          (6,5,4)
           (5,4,1)      (6,4,2)          (7,5,3)
           (5,2,2,1)    (8,3,1)          (9,5,1)
           (5,2,1,1,1)  (4,3,3,2)        (10,3,2)
                        (4,4,3,1)        (5,4,3,3)
                        (6,4,1,1)        (5,5,3,2)
                        (4,3,2,2,1)      (6,5,2,2)
                        (4,3,3,1,1)      (6,5,3,1)
                        (4,3,2,1,1,1)    (10,3,1,1)
                        (4,3,1,1,1,1,1)  (5,3,3,2,2)
                                         (5,3,3,3,1)
                                         (5,4,3,2,1)
                                         (5,5,3,1,1)
                                         (6,5,2,1,1)
                                         (5,3,2,2,2,1)
                                         (5,3,3,2,1,1)
                                         (5,4,3,1,1,1)
                                         (6,5,1,1,1,1)
                                         (5,3,2,2,1,1,1)
                                         (5,3,3,1,1,1,1)
                                         (5,3,2,1,1,1,1,1)
                                         (5,3,1,1,1,1,1,1,1)
		

Crossrefs

The Heinz numbers of these partitions are given by A327783.
Partitions whose LCM is equal to their sum are A074761.
Partitions whose LCM is greater than their sum are A327779.
Partitions whose LCM is less than their sum are A327781.

Programs

  • Maple
    a:= proc(m) option remember; local b; b:=
          proc(n, i, l) option remember; `if`(n=0 or i=1,
            `if`(l=m, 1, 0), `if`(i<2, 0, b(n, i-1, l))+
             b(n-i, min(n-i, i), igcd(m, ilcm(l, i))))
          end; `if`(isprime(m), 1, b(m$2, 1))
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Sep 26 2019
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Divisible[LCM@@#,n]&]],{n,30}]
    (* Second program: *)
    a[m_] := a[m] = Module[{b}, b[n_, i_, l_] := b[n, i, l] = If[n == 0 || i == 1, If[l == m, 1, 0], If[i<2, 0, b[n, i - 1, l]] + b[n - i, Min[n - i, i], GCD[m, LCM[l, i]]]]; If[PrimeQ[m], 1, b[m, m, 1]]];
    a /@ Range[0, 60] (* Jean-François Alcover, May 18 2021, after Alois P. Heinz *)

Formula

a(n) = 1 <=> n in { A000961 }. - Alois P. Heinz, Sep 26 2019
Showing 1-10 of 17 results. Next