A349156
Number of integer partitions of n whose mean is not an integer.
Original entry on oeis.org
1, 0, 0, 1, 1, 5, 3, 13, 11, 21, 28, 54, 31, 99, 111, 125, 165, 295, 259, 488, 425, 648, 933, 1253, 943, 1764, 2320, 2629, 2962, 4563, 3897, 6840, 6932, 9187, 11994, 12840, 12682, 21635, 25504, 28892, 28187, 44581, 42896, 63259, 66766, 74463, 104278, 124752
Offset: 0
The a(3) = 1 through a(8) = 11 partitions:
(21) (211) (32) (2211) (43) (332)
(41) (3111) (52) (422)
(221) (21111) (61) (431)
(311) (322) (521)
(2111) (331) (611)
(421) (22211)
(511) (32111)
(2221) (41111)
(3211) (221111)
(4111) (311111)
(22111) (2111111)
(31111)
(211111)
Below, "!" means either enumerative or set theoretical complement.
The version for nonempty subsets is !
A051293.
The version for distinct prime factors is
A176587, complement
A078174.
The multiplicative version (factorizations) is !
A326622, geometric !
A326028.
The conjugate is ranked by !
A326836.
The conjugate strict version is !
A326850.
These partitions are ranked by
A348551.
A327472 counts partitions not containing their mean, complement of
A237984.
Cf.
A001700,
A074761,
A098743,
A143773,
A175397,
A175761,
A298423,
A326027,
A326641,
A326842,
A326849,
A327778.
-
Table[Length[Select[IntegerPartitions[n],!IntegerQ[Mean[#]]&]],{n,0,30}]
A327779
Number of integer partitions of n whose LCM is greater than n.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 0, 2, 3, 7, 9, 18, 16, 31, 42, 61, 87, 133, 169, 246, 302, 411, 545, 738, 874, 1167, 1497, 1945, 2421, 3110, 3498, 4476, 5615, 7061, 8777, 10925, 12957, 16036, 19644, 24061, 28858, 35177, 41572, 50424, 60643, 72953, 87499, 104893, 123821, 147776
Offset: 0
The a(5) = 1 through a(12) = 16 partitions (empty columns not shown):
(32) (43) (53) (54) (64) (65) (75)
(52) (431) (72) (73) (74) (543)
(521) (432) (433) (83) (651)
(522) (532) (92) (732)
(531) (541) (443) (741)
(4311) (721) (533) (831)
(5211) (4321) (542) (921)
(5311) (641) (5322)
(43111) (722) (5331)
(731) (5421)
(4322) (7221)
(4331) (7311)
(5321) (53211)
(5411) (54111)
(7211) (72111)
(43211) (531111)
(53111)
(431111)
The Heinz numbers of these partitions are given by
A327784.
Partitions whose LCM is a multiple of their sum are
A327778.
Partitions whose LCM is equal to their sum are
A074761.
Partitions whose LCM is less than their sum are
A327781.
A327781
Number of integer partitions of n whose LCM is less than n.
Original entry on oeis.org
0, 0, 1, 2, 4, 5, 9, 12, 18, 22, 30, 37, 52, 69, 89, 110, 143, 163, 204, 243, 298, 374, 451, 516, 620, 790, 932, 1064, 1243, 1454, 1699, 2365, 2733, 3071, 3524, 3945, 4526, 5600, 6361, 7111, 8057, 9405, 10621, 12836, 14395, 16066, 18047, 19860, 22143, 25748
Offset: 0
The a(2) = 1 through a(8) = 18 partitions:
(11) (21) (22) (41) (33) (61) (44)
(111) (31) (221) (42) (322) (62)
(211) (311) (51) (331) (71)
(1111) (2111) (222) (421) (332)
(11111) (411) (511) (422)
(2211) (2221) (611)
(3111) (3211) (2222)
(21111) (4111) (3221)
(111111) (22111) (3311)
(31111) (4211)
(211111) (5111)
(1111111) (22211)
(32111)
(41111)
(221111)
(311111)
(2111111)
(11111111)
The Heinz numbers of these partitions are given by
A327776.
Partitions whose LCM is equal to their sum are
A074761.
Partitions whose LCM is greater than their sum are
A327779.
-
a:= proc(m) option remember; local b; b:=
proc(n, i, l) option remember; `if`(n=0, 1,
`if`(i>1, b(n, i-1, l), 0) +(h-> `if`(h0, b(m$2, 1), 0)
end:
seq(a(n), n=0..70); # Alois P. Heinz, Oct 10 2019
-
Table[Length[Select[IntegerPartitions[n],LCM@@#1, b[n, i - 1, l], 0] + Function[h, If[h0, b[m, m, 1], 0]];
a /@ Range[0, 70] (* Jean-François Alcover, May 18 2021, after Alois P. Heinz *)
-
b(m,n)={my(d=divisors(m)); polcoef(1/prod(i=1, #d, 1 - x^d[i] + O(x*x^n)), n)}
a(n)={sum(m=1, n-1, b(m, n)*sum(i=1, (n-1)\m, moebius(i)))} \\ Andrew Howroyd, Oct 09 2019
A327783
Heinz numbers of integer partitions whose LCM is a multiple of their sum.
Original entry on oeis.org
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 30, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 154, 157, 163, 165, 167, 173, 179, 181, 190, 191, 193, 197, 198, 199, 211, 223, 227, 229, 233, 239, 241
Offset: 1
The sequence of terms together with their prime indices begins:
2: {1}
3: {2}
5: {3}
7: {4}
11: {5}
13: {6}
17: {7}
19: {8}
23: {9}
29: {10}
30: {1,2,3}
31: {11}
37: {12}
41: {13}
43: {14}
47: {15}
53: {16}
59: {17}
61: {18}
67: {19}
The enumeration of these partitions by sum is
A327778.
Heinz numbers of partitions whose LCM is twice their sum are
A327775.
Heinz numbers of partitions whose LCM is less than their sum are
A327776.
Heinz numbers of partitions whose LCM is greater than their sum are
A327784.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[2,100],Divisible[LCM@@primeMS[#],Total[primeMS[#]]]&]
A327775
Heinz numbers of integer partitions whose LCM is twice their sum.
Original entry on oeis.org
154, 190, 435, 580, 714, 952, 1118, 1287, 1430, 1653, 1716, 1815, 1935, 2067, 2150, 2204, 2254, 2288, 2415, 2475, 2580, 2756, 2898, 2970, 3220, 3300, 3440, 3710, 3864, 3960, 3975, 4770, 5152, 5280, 5300, 6360, 6461, 6897, 7514, 8307, 8480, 8619, 8695, 8778
Offset: 1
The sequence of terms together with their prime indices begins:
154: {1,4,5}
190: {1,3,8}
435: {2,3,10}
580: {1,1,3,10}
714: {1,2,4,7}
952: {1,1,1,4,7}
1118: {1,6,14}
1287: {2,2,5,6}
1430: {1,3,5,6}
1653: {2,8,10}
1716: {1,1,2,5,6}
1815: {2,3,5,5}
1935: {2,2,3,14}
2067: {2,6,16}
2150: {1,3,3,14}
2204: {1,1,8,10}
2254: {1,4,4,9}
2288: {1,1,1,1,5,6}
2415: {2,3,4,9}
2475: {2,2,3,3,5}
The enumeration of these partitions by sum is
A327780.
Heinz numbers of partitions whose LCM is less than their sum are
A327776.
Heinz numbers of partitions whose LCM is a multiple their sum are
A327783.
Heinz numbers of partitions whose LCM is greater than their sum are
A327784.
-
q:= n-> (l-> is(ilcm(l[])=2*add(j, j=l)))(map(i->
numtheory[pi](i[1])$i[2], ifactors(n)[2])):
select(q, [$1..10000])[]; # Alois P. Heinz, Sep 27 2019
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[2,1000],LCM@@primeMS[#]==2*Total[primeMS[#]]&]
A327780
Number of integer partitions of n whose LCM is 2 * n.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 12, 0, 0, 6, 0, 10, 32, 6, 0, 8, 0, 9, 0, 32, 0, 505, 0, 0, 108, 16, 147, 258, 0, 20, 170, 134, 0, 2030, 0, 140, 1865, 30, 0, 80, 0, 105, 350, 236, 0, 419, 500, 617, 474, 49, 0, 40966, 0, 56, 8225, 0, 785
Offset: 0
The a(10) = 1 through a(20) = 10 partitions (A = 10) (empty columns not shown):
(541) (831) (7421) (A32) (9432) (A82)
(74111) (5532) (9441) (8552)
(6522) (94221) (A811)
(6531) (94311) (85421)
(A311) (942111) (85511)
(53322) (9411111) (852221)
(65211) (854111)
(532221) (8522111)
(533211) (85211111)
(651111) (851111111)
(5322111)
(53211111)
The Heinz numbers of these partitions are given by
A327775.
Partitions whose LCM is a multiple of their sum are
A327778.
Partitions whose LCM is equal to their sum are
A074761.
Partitions whose LCM is greater than their sum are
A327779.
Partitions whose LCM is less than their sum are
A327781.
-
Table[Length[Select[IntegerPartitions[n],LCM@@#==2*n&]],{n,30}]
-
b(m,n)={my(d=divisors(m)); polcoef(1/prod(i=1, #d, 1 - x^d[i] + O(x*x^n)), n)}
a(n)={if(n<1, 0, sumdiv(2*n, d, moebius(d)*b(2*n/d, n)))} \\ Andrew Howroyd, Oct 09 2019
Showing 1-6 of 6 results.
Comments