A326842 Number of integer partitions of n whose parts all divide n and whose length also divides n.
1, 1, 2, 2, 3, 2, 5, 2, 5, 3, 5, 2, 21, 2, 5, 6, 9, 2, 22, 2, 21, 6, 5, 2, 134, 3, 5, 6, 23, 2, 157, 2, 27, 6, 5, 6, 478, 2, 5, 6, 208, 2, 224, 2, 31, 63, 5, 2, 1720, 3, 30, 6, 34, 2, 322, 6, 295, 6, 5, 2, 13899, 2, 5, 68, 126, 8, 429, 2, 42, 6, 358, 2, 19959, 2
Offset: 0
Keywords
Examples
The a(1) = 1 through a(8) = 5 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (11) (111) (22) (11111) (33) (1111111) (44) (1111) (222) (2222) (321) (4211) (111111) (11111111) The a(12) = 21 partitions: (12) (6,6) (4,4,4) (6,3,3) (6,4,2) (3,3,3,3) (4,3,3,2) (4,4,2,2) (4,4,3,1) (6,2,2,2) (6,3,2,1) (6,4,1,1) (2,2,2,2,2,2) (3,2,2,2,2,1) (3,3,2,2,1,1) (3,3,3,1,1,1) (4,2,2,2,1,1) (4,3,2,1,1,1) (4,4,1,1,1,1) (6,2,1,1,1,1) (1,1,1,1,1,1,1,1,1,1,1,1)
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 0..419
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n,All,Divisors[n]],Divisible[n,Length[#]]&]],{n,1,30}]
Comments