cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326843 Number of integer partitions of n whose length and maximum both divide n.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 5, 2, 5, 3, 5, 2, 22, 2, 5, 11, 16, 2, 36, 2, 46, 22, 5, 2, 209, 3, 5, 42, 130, 2, 434, 2, 217, 77, 5, 52, 1400, 2, 5, 135, 1749, 2, 1782, 2, 957, 2151, 5, 2, 8355, 3, 1859, 385, 2388, 2, 6726, 2765, 10641, 627, 5, 2, 68049, 2, 5, 13424, 17142
Offset: 0

Views

Author

Gus Wiseman, Jul 26 2019

Keywords

Comments

The Heinz numbers of these partitions are given by A326837.

Examples

			The a(1) = 1 through a(8) = 5 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (11111)  (33)      (1111111)  (44)
                    (1111)           (222)                (2222)
                                     (321)                (4211)
                                     (111111)             (11111111)
The a(12) = 22 partitions:
  (12)
  (6,6)
  (4,4,4)
  (6,3,3)
  (6,4,2)
  (6,5,1)
  (3,3,3,3)
  (4,3,3,2)
  (4,4,2,2)
  (4,4,3,1)
  (6,2,2,2)
  (6,3,2,1)
  (6,4,1,1)
  (2,2,2,2,2,2)
  (3,2,2,2,2,1)
  (3,3,2,2,1,1)
  (3,3,3,1,1,1)
  (4,2,2,2,1,1)
  (4,3,2,1,1,1)
  (4,4,1,1,1,1)
  (6,2,1,1,1,1)
  (1,1,1,1,1,1,1,1,1,1,1,1)
		

Crossrefs

The strict case is A326851.
The non-constant case is A326852.
The case where all parts (not just the maximum) divide n is A326842.

Programs

  • Mathematica
    Table[If[n==0,1,Length[Select[IntegerPartitions[n],Divisible[n,Length[#]]&&Divisible[n,Max[#]]&]]],{n,0,30}]