A326875 BII-numbers of set-systems that are closed under union.
0, 1, 2, 4, 5, 6, 7, 8, 16, 17, 24, 25, 32, 34, 40, 42, 64, 65, 66, 68, 69, 70, 71, 72, 76, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 93, 96, 97, 98, 100, 101, 102, 103, 104, 106, 108, 110, 112, 113, 114, 116, 117, 118, 119, 120, 121, 122, 124, 125, 126, 127, 128
Offset: 1
Examples
The sequence of all set-systems that are closed under union together with their BII-numbers begins: 0: {} 1: {{1}} 2: {{2}} 4: {{1,2}} 5: {{1},{1,2}} 6: {{2},{1,2}} 7: {{1},{2},{1,2}} 8: {{3}} 16: {{1,3}} 17: {{1},{1,3}} 24: {{3},{1,3}} 25: {{1},{3},{1,3}} 32: {{2,3}} 34: {{2},{2,3}} 40: {{3},{2,3}} 42: {{2},{3},{2,3}} 64: {{1,2,3}} 65: {{1},{1,2,3}} 66: {{2},{1,2,3}} 68: {{1,2},{1,2,3}} 69: {{1},{1,2},{1,2,3}} 70: {{2},{1,2},{1,2,3}} 71: {{1},{2},{1,2},{1,2,3}} 72: {{3},{1,2,3}} 76: {{1,2},{3},{1,2,3}} 80: {{1,3},{1,2,3}} 81: {{1},{1,3},{1,2,3}} 82: {{2},{1,3},{1,2,3}} 84: {{1,2},{1,3},{1,2,3}} 85: {{1},{1,2},{1,3},{1,2,3}} 86: {{2},{1,2},{1,3},{1,2,3}}
Links
- John Tyler Rascoe, Table of n, a(n) for n = 1..3000
Crossrefs
Programs
-
Mathematica
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; Select[Range[0,100],SubsetQ[bpe/@bpe[#],Union@@@Tuples[bpe/@bpe[#],2]]&]
-
Python
from itertools import count, islice, combinations def bin_i(n): #binary indices return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1']) def a_gen(): for n in count(0): E,f = [bin_i(k) for k in bin_i(n)],0 for i in combinations(E,2): if list(set(i[0])|set(i[1])) not in E: f += 1 break if f < 1: yield n A326875_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, Mar 06 2025
Comments