A326878 Number of topologies whose points are a subset of {1..n}.
1, 2, 7, 45, 500, 9053, 257151, 11161244, 725343385, 69407094565, 9639771895398, 1919182252611715, 541764452276876719, 214777343584048313318, 118575323291814379721651, 90492591258634595795504697, 94844885130660856889237907260, 135738086271526574073701454370969, 263921383510041055422284977248713291
Offset: 0
Keywords
Examples
The a(0) = 1 through a(2) = 7 topologies: {{}} {{}} {{}} {{},{1}} {{},{1}} {{},{2}} {{},{1,2}} {{},{1},{1,2}} {{},{2},{1,2}} {{},{1},{2},{1,2}}
Links
- Wikipedia Topological space
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Subsets[Range[n]]],MemberQ[#,{}]&&SubsetQ[#,Union[Union@@@Tuples[#,2],Intersection@@@Tuples[#,2]]]&]],{n,0,4}] (* Second program: *) A000798 = Cases[Import["https://oeis.org/A000798/b000798.txt", "Table"], {, }][[All, 2]]; a[n_] := Sum[Binomial[n, k]*A000798[[k+1]], {k, 0, n}]; a /@ Range[0, Length[A000798]-1] (* Jean-François Alcover, Dec 30 2019 *)
Formula
From Geoffrey Critzer, Jul 12 2022: (Start)
E.g.f.: exp(x)*A(exp(x)-1) where A(x) is the e.g.f. for A001035.
a(n) = Sum_{k=0..n} binomial(n,k)*A000798(k). (End)