cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326883 Number of unlabeled set-systems with {} that are closed under intersection and cover n vertices.

Original entry on oeis.org

1, 1, 4, 22, 302, 28630, 216533404, 5592325966377736
Offset: 0

Views

Author

Gus Wiseman, Jul 30 2019

Keywords

Examples

			Non-isomorphic representatives of the a(0) = 1 through a(3) = 22 set-systems:
  {{}}  {{}{1}}  {{}{12}}        {{}{123}}
                 {{}{1}{2}}      {{}{1}{23}}
                 {{}{2}{12}}     {{}{3}{123}}
                 {{}{1}{2}{12}}  {{}{1}{2}{3}}
                                 {{}{23}{123}}
                                 {{}{1}{3}{23}}
                                 {{}{2}{3}{123}}
                                 {{}{3}{13}{23}}
                                 {{}{1}{23}{123}}
                                 {{}{3}{23}{123}}
                                 {{}{1}{2}{3}{23}}
                                 {{}{1}{2}{3}{123}}
                                 {{}{2}{3}{13}{23}}
                                 {{}{1}{3}{23}{123}}
                                 {{}{2}{3}{23}{123}}
                                 {{}{3}{13}{23}{123}}
                                 {{}{1}{2}{3}{13}{23}}
                                 {{}{1}{2}{3}{23}{123}}
                                 {{}{2}{3}{13}{23}{123}}
                                 {{}{1}{2}{3}{12}{13}{23}}
                                 {{}{1}{2}{3}{13}{23}{123}}
                                 {{}{1}{2}{3}{12}{13}{23}{123}}
		

Crossrefs

The case also closed under union is A001930.
The connected case (i.e., with maximum) is A108798.
The same for union instead of intersection is (also) A108798.
The non-covering case is A108800.
The labeled case is A326881.

Formula

a(n) = A108800(n) - A108800(n-1) for n > 0. - Andrew Howroyd, Aug 10 2019

Extensions

a(5)-a(7) from Andrew Howroyd, Aug 10 2019