cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A102894 Number of ACI algebras or semilattices on n generators, with no identity or annihilator.

Original entry on oeis.org

1, 1, 4, 45, 2271, 1373701, 75965474236, 14087647703920103947
Offset: 0

Views

Author

Mitch Harris, Jan 18 2005

Keywords

Comments

Or, number of families of subsets of {1, ..., n} that are closed under intersection and contain both the universe and the empty set.
An ACI algebra or semilattice is a system with a single binary, idempotent, commutative and associative operation.
Also the number of set-systems covering n vertices that are closed under union. The BII-numbers of these set-systems are given by A326875. - Gus Wiseman, Aug 01 2019
Number of strict closure operators on a set of n elements, where the closure operator is said to be strict if the empty set is closed. - Tian Vlasic, Jul 30 2022

Examples

			From _Gus Wiseman_, Aug 01 2019: (Start)
The a(3) = 45 set-systems with {} and {1,2,3} that are closed under intersection are the following ({} and {1,2,3} not shown). The BII-numbers of these set-systems are given by A326880.
0   {1}   {1}{2}   {1}{2}{3}    {1}{2}{3}{12}   {1}{2}{3}{12}{13}
    {2}   {1}{3}   {1}{2}{12}   {1}{2}{3}{13}   {1}{2}{3}{12}{23}
    {3}   {2}{3}   {1}{2}{13}   {1}{2}{3}{23}   {1}{2}{3}{13}{23}
    {12}  {1}{12}  {1}{2}{23}   {1}{2}{12}{13}
    {13}  {1}{13}  {1}{3}{12}   {1}{2}{12}{23}
    {23}  {1}{23}  {1}{3}{13}   {1}{3}{12}{13}        {1}{2}{3}{12}{13}{23}
          {2}{12}  {1}{3}{23}   {1}{3}{13}{23}
          {2}{13}  {2}{3}{12}   {2}{3}{12}{23}
          {2}{23}  {2}{3}{13}   {2}{3}{13}{23}
          {3}{12}  {2}{3}{23}
          {3}{13}  {1}{12}{13}
          {3}{23}  {2}{12}{23}
                   {3}{13}{23}
(End)
		

References

  • G. Birkhoff, Lattice Theory. American Mathematical Society, Colloquium Publications, Vol. 25, 3rd ed., Providence, RI, 1967.
  • Maria Paola Bonacina and Nachum Dershowitz, Canonical Inference for Implicational Systems, in Automated Reasoning, Lecture Notes in Computer Science, Volume 5195/2008, Springer-Verlag.
  • E. H. Moore, Introduction to a Form of General Analysis, AMS Colloquium Publication 2 (1910), pp. 53-80.

Crossrefs

Regarding set-systems covering n vertices closed under union:
- The non-covering case is A102896.
- The BII-numbers of these set-systems are A326875.
- The case with intersection instead of union is A326881.
- The unlabeled case is A108798.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&SubsetQ[#,Union@@@Tuples[#,2]]&]],{n,0,3}] (* Gus Wiseman, Aug 01 2019 *)

Formula

Inverse binomial transform of A102896.
For asymptotics see A102897.

Extensions

Additional comments from Don Knuth, Jul 01 2005

A102895 Number of ACI algebras or semilattices on n generators with no identity element.

Original entry on oeis.org

1, 2, 8, 90, 4542, 2747402, 151930948472, 28175295407840207894
Offset: 0

Views

Author

Mitch Harris, Jan 18 2005

Keywords

Comments

An ACI algebra or semilattice is a system with a single binary, idempotent, commutative and associative operation.
Or, number of families of subsets of {1, ..., n} that are closed under intersection and contain the empty set.

Examples

			a(2) = 8: Let the points be labeled a, b and let 0 denote the empty set. We want the number of collections of subsets of {a, b} which are closed under intersection and contain the empty subset. 0 subsets: 0 ways, 1 subset: 1 way (0), 2 subsets: 3 ways (0,a; 0,b; 0,ab), 3 subsets: 3 ways (0,a,b; 0,a,ab; 0,b,ab), 4 subsets: 1 way (0,a,b,ab), for a total of 8.
From _Gus Wiseman_, Aug 02 2019: (Start)
The a(0) = 1 through a(2) = 8 sets of sets with {} that are closed under intersection are:
  {{}}  {{}}      {{}}
        {{},{1}}  {{},{1}}
                  {{},{2}}
                  {{},{1,2}}
                  {{},{1},{2}}
                  {{},{1},{1,2}}
                  {{},{2},{1,2}}
                  {{},{1},{2},{1,2}}
(End)
		

References

  • G. Birkhoff, Lattice Theory. American Mathematical Society, Colloquium Publications, Vol. 25, 3rd ed., Providence, RI, 1967.
  • Maria Paola Bonacina and Nachum Dershowitz, Canonical Inference for Implicational Systems, in Automated Reasoning, Lecture Notes in Computer Science, Volume 5195/2008, Springer-Verlag.
  • P. Colomb, A. Irlande and O. Raynaud, Counting of Moore Families for n=7, International Conference on Formal Concept Analysis (2010)
  • E. H. Moore, Introduction to a Form of General Analysis, AMS Colloquium Publication 2 (1910), pp. 53-80.

Crossrefs

The connected case (i.e., with maximum) is A102894.
The same for union instead of intersection is A102896.
The unlabeled version is A108800.
The case also closed under union is A326878.
The BII-numbers of these set-systems (without the empty set) are A326880.
The covering case is A326881.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]]],MemberQ[#,{}]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}] (* Gus Wiseman, Aug 02 2019 *)

Formula

For asymptotics see A102897.
a(n > 0) = 2 * A102894(n).

Extensions

Additional comments from Don Knuth, Jul 01 2005
Changed a(0) from 2 to 1 by Gus Wiseman, Aug 02 2019

A193674 Number of nonisomorphic systems enumerated by A102896; that is, the number of inequivalent closure operators (or Moore families).

Original entry on oeis.org

1, 2, 5, 19, 184, 14664, 108295846, 2796163199765896
Offset: 0

Views

Author

Don Knuth, Jul 01 2005

Keywords

Comments

Also the number of unlabeled n-vertex set-systems (A003180) closed under union. - Gus Wiseman, Aug 01 2019

Examples

			From _Gus Wiseman_, Aug 01 2019: (Start)
Non-isomorphic representatives of the a(0) = 1 through a(3) = 19 set-systems closed under union:
  {}  {}     {}               {}
      {{1}}  {{1}}            {{1}}
             {{1,2}}          {{1,2}}
             {{2},{1,2}}      {{1,2,3}}
             {{1},{2},{1,2}}  {{2},{1,2}}
                              {{3},{1,2,3}}
                              {{1},{2},{1,2}}
                              {{2,3},{1,2,3}}
                              {{1},{2,3},{1,2,3}}
                              {{3},{2,3},{1,2,3}}
                              {{1,3},{2,3},{1,2,3}}
                              {{2},{3},{2,3},{1,2,3}}
                              {{2},{1,3},{2,3},{1,2,3}}
                              {{3},{1,3},{2,3},{1,2,3}}
                              {{1,2},{1,3},{2,3},{1,2,3}}
                              {{2},{3},{1,3},{2,3},{1,2,3}}
                              {{3},{1,2},{1,3},{2,3},{1,2,3}}
                              {{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
                              {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
(End)
		

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 4, Section 7.1.1

Crossrefs

The labeled case is A102896.
The covering case is A108798.
The same for intersection instead of union is A108800.
The case with empty edges allowed is A193675.

Formula

a(n) = A193675(n)/2.

Extensions

a(6) received Aug 17 2005
a(6) corrected by Pierre Colomb, Aug 02 2011
a(7) from Gunnar Brinkmann, Feb 07 2018

A108798 Number of nonisomorphic systems enumerated by A102894; that is, the number of inequivalent closure operators in which the empty set is closed. Also, the number of union-closed sets with n elements that contain the universe and the empty set.

Original entry on oeis.org

1, 1, 3, 14, 165, 14480, 108281182, 2796163091470050
Offset: 0

Views

Author

Don Knuth, Jul 01 2005

Keywords

Comments

Also the number of unlabeled finite sets of subsets of {1..n} that contain {} and {1..n} and are closed under intersection. - Gus Wiseman, Aug 02 2019

Examples

			From _Gus Wiseman_, Aug 02 2019: (Start)
Non-isomorphic representatives of the a(0) = 1 through a(3) = 14 union-closed sets of sets:
  {}  {}{1}  {}{12}        {}{123}
             {}{2}{12}     {}{3}{123}
             {}{1}{2}{12}  {}{23}{123}
                           {}{1}{23}{123}
                           {}{3}{23}{123}
                           {}{13}{23}{123}
                           {}{2}{3}{23}{123}
                           {}{2}{13}{23}{123}
                           {}{3}{13}{23}{123}
                           {}{12}{13}{23}{123}
                           {}{2}{3}{13}{23}{123}
                           {}{3}{12}{13}{23}{123}
                           {}{2}{3}{12}{13}{23}{123}
                           {}{1}{2}{3}{12}{13}{23}{123}
(End)
		

Crossrefs

Formula

a(n) = A108800(n)/2.

Extensions

a(6) added (using A193674) by N. J. A. Sloane, Aug 02 2011
Added a(7), and reference to union-closed sets. - Gunnar Brinkmann, Feb 05 2018

A108800 Number of nonisomorphic systems enumerated by A102895.

Original entry on oeis.org

1, 2, 6, 28, 330, 28960, 216562364, 5592326182940100
Offset: 0

Views

Author

Don Knuth, Jul 01 2005

Keywords

Comments

Also the number of non-isomorphic sets of sets with {} that are closed under intersection. Also the number of non-isomorphic set-systems (without {}) covering n + 1 vertices and closed under intersection. - Gus Wiseman, Aug 05 2019

Examples

			From _Gus Wiseman_, Aug 02 2019: (Start)
Non-isomorphic representatives of the a(0) = 1 through a(3) = 28 sets of sets with {} that are closed under intersection:
  {}  {}     {}            {}
      {}{1}  {}{1}         {}{1}
             {}{12}        {}{12}
             {}{1}{2}      {}{123}
             {}{2}{12}     {}{1}{2}
             {}{1}{2}{12}  {}{1}{23}
                           {}{2}{12}
                           {}{3}{123}
                           {}{1}{2}{3}
                           {}{23}{123}
                           {}{1}{2}{12}
                           {}{1}{3}{23}
                           {}{2}{3}{123}
                           {}{3}{13}{23}
                           {}{1}{23}{123}
                           {}{3}{23}{123}
                           {}{1}{2}{3}{23}
                           {}{1}{2}{3}{123}
                           {}{2}{3}{13}{23}
                           {}{1}{3}{23}{123}
                           {}{2}{3}{23}{123}
                           {}{3}{13}{23}{123}
                           {}{1}{2}{3}{13}{23}
                           {}{1}{2}{3}{23}{123}
                           {}{2}{3}{13}{23}{123}
                           {}{1}{2}{3}{12}{13}{23}
                           {}{1}{2}{3}{13}{23}{123}
                           {}{1}{2}{3}{12}{13}{23}{123}
(End)
		

Crossrefs

Except a(0) = 1, first differences of A193675.
The connected case (i.e., with maximum) is A108798.
The same for union instead of intersection is (also) A108798.
The labeled version is A102895.
The case also closed under union is A326898.
The covering case is A326883.

Formula

a(n > 0) = 2 * A108798(n).

Extensions

a(6) added (using A193675) by N. J. A. Sloane, Aug 02 2011
Changed a(0) from 2 to 1 by Gus Wiseman, Aug 02 2019
a(7) added (using A108798) by Andrew Howroyd, Aug 10 2019

A326881 Number of set-systems with {} that are closed under intersection and cover n vertices.

Original entry on oeis.org

1, 1, 5, 71, 4223, 2725521, 151914530499, 28175294344381108057
Offset: 0

Views

Author

Gus Wiseman, Jul 30 2019

Keywords

Examples

			The a(2) = 5 set-systems:
  {{},{1,2}}
  {{},{1},{2}}
  {{},{1},{1,2}}
  {{},{2},{1,2}}
  {{},{1},{2},{1,2}}
		

Crossrefs

The case also closed under union is A000798.
The connected case (i.e., with maximum) is A102894.
The same for union instead of intersection is (also) A102894.
The non-covering case is A102895.
The BII-numbers of these set-systems (without the empty set) are A326880.
The unlabeled case is A326883.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]]],MemberQ[#,{}]&&Union@@#==Range[n]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}]

Formula

Inverse binomial transform of A102895. - Andrew Howroyd, Aug 10 2019

Extensions

a(5)-a(7) from Andrew Howroyd, Aug 10 2019

A326906 Number of sets of subsets of {1..n} that are closed under union and cover all n vertices.

Original entry on oeis.org

2, 2, 8, 90, 4542, 2747402, 151930948472, 28175295407840207894
Offset: 0

Views

Author

Gus Wiseman, Aug 03 2019

Keywords

Comments

Differs from A102895 in having a(0) = 2 instead of 1.

Examples

			The a(0) = 2 through a(2) = 8 sets of subsets:
  {}    {{1}}     {{1,2}}
  {{}}  {{},{1}}  {{},{1,2}}
                  {{1},{1,2}}
                  {{2},{1,2}}
                  {{},{1},{1,2}}
                  {{},{2},{1,2}}
                  {{1},{2},{1,2}}
                  {{},{1},{2},{1,2}}
		

Crossrefs

The case without empty sets is A102894.
The case with a single covering edge is A102895.
Binomial transform is A102897.
The case also closed under intersection is A326878 for n > 0.
The same for intersection instead of union is (also) A326906.
The unlabeled version is A326907.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]]],Union@@#==Range[n]&&SubsetQ[#,Union@@@Tuples[#,2]]&]],{n,0,3}]

Formula

a(n) = 2 * A102894(n).

A326907 Number of non-isomorphic sets of subsets of {1..n} that are closed under union and cover all n vertices. First differences of A193675.

Original entry on oeis.org

2, 2, 6, 28, 330, 28960, 216562364, 5592326182940100
Offset: 0

Views

Author

Gus Wiseman, Aug 03 2019

Keywords

Comments

Differs from A108800 in having a(0) = 2 instead of 1.

Examples

			Non-isomorphic representatives of the a(0) = 2 through a(3) = 28 sets of sets:
  {}    {{1}}    {{12}}          {{123}}
  {{}}  {{}{1}}  {{}{12}}        {{}{123}}
                 {{2}{12}}       {{3}{123}}
                 {{}{2}{12}}     {{23}{123}}
                 {{1}{2}{12}}    {{}{3}{123}}
                 {{}{1}{2}{12}}  {{}{23}{123}}
                                 {{1}{23}{123}}
                                 {{3}{23}{123}}
                                 {{13}{23}{123}}
                                 {{}{1}{23}{123}}
                                 {{}{3}{23}{123}}
                                 {{}{13}{23}{123}}
                                 {{2}{3}{23}{123}}
                                 {{2}{13}{23}{123}}
                                 {{3}{13}{23}{123}}
                                 {{12}{13}{23}{123}}
                                 {{}{2}{3}{23}{123}}
                                 {{}{2}{13}{23}{123}}
                                 {{}{3}{13}{23}{123}}
                                 {{}{12}{13}{23}{123}}
                                 {{2}{3}{13}{23}{123}}
                                 {{3}{12}{13}{23}{123}}
                                 {{}{2}{3}{13}{23}{123}}
                                 {{}{3}{12}{13}{23}{123}}
                                 {{2}{3}{12}{13}{23}{123}}
                                 {{}{2}{3}{12}{13}{23}{123}}
                                 {{1}{2}{3}{12}{13}{23}{123}}
                                 {{}{1}{2}{3}{12}{13}{23}{123}}
		

Crossrefs

The case without empty sets is A108798.
The case with a single covering edge is A108800.
First differences of A193675.
The case also closed under intersection is A326898 for n > 0.
The labeled version is A326906.
The same for union instead of intersection is (also) A326907.

Extensions

a(7) added from A108800 by Andrew Howroyd, Aug 10 2019

A326908 Number of non-isomorphic sets of subsets of {1..n} that are closed under union and intersection.

Original entry on oeis.org

2, 4, 9, 23, 70, 256, 1160, 6599, 48017, 452518, 5574706, 90198548, 1919074899, 53620291147, 1962114118390, 93718030190126, 5822768063787557
Offset: 0

Views

Author

Gus Wiseman, Aug 03 2019

Keywords

Examples

			Non-isomorphic representatives of the a(0) = 2 through a(3) = 23 sets of subsets:
  {}    {}       {}              {}
  {{}}  {{}}     {{}}            {{}}
        {{1}}    {{1}}           {{1}}
        {{}{1}}  {{12}}          {{12}}
                 {{}{1}}         {{}{1}}
                 {{}{12}}        {{123}}
                 {{2}{12}}       {{}{12}}
                 {{}{2}{12}}     {{}{123}}
                 {{}{1}{2}{12}}  {{2}{12}}
                                 {{3}{123}}
                                 {{}{2}{12}}
                                 {{23}{123}}
                                 {{}{3}{123}}
                                 {{}{23}{123}}
                                 {{}{1}{2}{12}}
                                 {{3}{23}{123}}
                                 {{}{1}{23}{123}}
                                 {{}{3}{23}{123}}
                                 {{3}{13}{23}{123}}
                                 {{}{2}{3}{23}{123}}
                                 {{}{3}{13}{23}{123}}
                                 {{}{2}{3}{13}{23}{123}}
                                 {{}{1}{2}{3}{12}{13}{23}{123}}
		

Crossrefs

The labeled version is A306445.
Taking first differences and prepending 1 gives A326898.
Taking second differences and prepending two 1's gives A001930.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]]],SubsetQ[#,Union@@@Tuples[#,2]]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}]
Showing 1-9 of 9 results.