A326890 Successive positive minima of Gram's points g(n) of the Riemann zeta function.
1, 3, 8, 12, 26, 33, 62, 899, 1288, 3382, 3803, 17161, 97280, 208678, 368382, 45898152, 55785549, 65463721
Offset: 1
Examples
n | a(n) | g(a(n)) = Zeta value ---+--------+--------------------- 1 | 1 | 1.457427047874012250 2 | 3 | 0.925264643315366642 3 | 8 | 0.688292371691853238 4 | 12 | 0.538585793754601351 5 | 26 | 0.491521463374527648 6 | 33 | 0.14158237349601719 7 | 62 | 0.00818833702586957 8 | 899 | 0.00443821005886578 9 | 1288 | 0.003877434204568 10 | 3382 | 0.000203064538534 11 | 3803 | 0.000137683252272 12 | 17161 | 0.00011012022914 13 | 97280 | 0.0000123785958 14 | 208678 | 0.000010257478 15 | 368382 | 0.0000000890976
Links
- M. A. Korolev, On small values of the Riemann zeta-function at Gram points, Mat. Sb., 2014, Volume 205, Number 1, 67-86. In Russian. In English.
Programs
-
Mathematica
ff = 10; aa = {}; Do[ kk = Re[Zeta[1/2 + I N[ InverseFunction[ RiemannSiegelTheta][n Pi], 10]]]; If[(kk > 0) && (kk < ff), AppendTo[aa, n]; ff = kk], {n, 1, 450000}]; aa
Comments