cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326890 Successive positive minima of Gram's points g(n) of the Riemann zeta function.

Original entry on oeis.org

1, 3, 8, 12, 26, 33, 62, 899, 1288, 3382, 3803, 17161, 97280, 208678, 368382, 45898152, 55785549, 65463721
Offset: 1

Views

Author

Artur Jasinski, Sep 13 2019

Keywords

Comments

Gram's points occur when the imaginary part of Riemann zeta function is zero but the real part isn't zero.
For very small values of Gram's points the distance between nearest zero of Riemann zeta function is very small.
For successive negative minima of Gram's points g(n) of the Riemann zeta function see A326891.
a(16)-a(18) follow Korolev 2014.

Examples

			   n |  a(n)  | g(a(n)) = Zeta value
  ---+--------+---------------------
   1 |      1 | 1.457427047874012250
   2 |      3 | 0.925264643315366642
   3 |      8 | 0.688292371691853238
   4 |     12 | 0.538585793754601351
   5 |     26 | 0.491521463374527648
   6 |     33 | 0.14158237349601719
   7 |     62 | 0.00818833702586957
   8 |    899 | 0.00443821005886578
   9 |   1288 | 0.003877434204568
  10 |   3382 | 0.000203064538534
  11 |   3803 | 0.000137683252272
  12 |  17161 | 0.00011012022914
  13 |  97280 | 0.0000123785958
  14 | 208678 | 0.000010257478
  15 | 368382 | 0.0000000890976
		

Crossrefs

Programs

  • Mathematica
    ff = 10; aa = {}; Do[ kk = Re[Zeta[1/2 + I N[ InverseFunction[ RiemannSiegelTheta][n Pi], 10]]]; If[(kk > 0) && (kk < ff), AppendTo[aa, n]; ff = kk], {n, 1, 450000}]; aa