A326891 Successive negative minima of Gram's points g(n) of the Riemann zeta function.
126, 134, 777, 1165, 2808, 3782, 12174, 14374, 23149, 60780, 117807, 126085
Offset: 1
Examples
n | a(n) | g(a(n)) = Zeta value ---+--------+--------------------- 1 | 126 | -0.02762949885719994 2 | 134 | -0.01690039090339079 3 | 777 | -0.00964626429746985 4 | 1165 | -0.008575843736423 5 | 2808 | -0.005747300941326 6 | 3782 | -0.000760294730822 7 | 12174 | -0.00045763304501 8 | 14374 | -0.00027891005688 9 | 23149 | -0.00007068683846 10 | 60780 | -0.0000398945276 11 | 117807 | -0.0000229487717 12 | 126085 | -0.0000077126884
Links
- M. A. Korolev, On small values of the Riemann zeta-function at Gram points, Mat. Sb., 2014, Volume 205, Number 1, 67-86. In Russian.
Programs
-
Mathematica
ee = 10; cc = {}; Do[kk = Re[Zeta[1/2 + I N[InverseFunction[ RiemannSiegelTheta][n Pi], 10]]];If[(kk < 0) && (Abs[kk] < ee), AppendTo[cc, n]; ee = Abs[kk]], {n, 1, 1000000}]; aa
Comments