A326900 Number of set-systems on n vertices that are closed under union and intersection.
1, 2, 6, 29, 232, 3032, 62837, 2009408, 97034882, 6952703663, 728107141058, 109978369078580, 23682049666957359, 7195441649260733390, 3056891748255795885338, 1801430622263459795017565, 1462231768717868324127642932, 1624751185398704445629757084188, 2457871026957756859612862822442301
Offset: 0
Keywords
Examples
The a(0) = 1 through a(3) = 29 set-systems: {} {} {} {} {{1}} {{1}} {{1}} {{2}} {{2}} {{1,2}} {{3}} {{1},{1,2}} {{1,2}} {{2},{1,2}} {{1,3}} {{2,3}} {{1,2,3}} {{1},{1,2}} {{1},{1,3}} {{2},{1,2}} {{2},{2,3}} {{3},{1,3}} {{3},{2,3}} {{1},{1,2,3}} {{2},{1,2,3}} {{3},{1,2,3}} {{1,2},{1,2,3}} {{1,3},{1,2,3}} {{2,3},{1,2,3}} {{1},{1,2},{1,2,3}} {{1},{1,3},{1,2,3}} {{2},{1,2},{1,2,3}} {{2},{2,3},{1,2,3}} {{3},{1,3},{1,2,3}} {{3},{2,3},{1,2,3}} {{1},{1,2},{1,3},{1,2,3}} {{2},{1,2},{2,3},{1,2,3}} {{3},{1,3},{2,3},{1,2,3}}
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],SubsetQ[#,Union[Union@@@Tuples[#,2],Intersection@@@Tuples[#,2]]]&]],{n,0,3}] (* Second program: *) A006058 = Cases[Import["https://oeis.org/A006058/b006058.txt", "Table"], {, }][[All, 2]]; a[n_] := Sum[Binomial[n, k] A006058[[k + 1]], {k, 0, n}]; a /@ Range[0, 18] (* Jean-François Alcover, Jan 01 2020 *)
Extensions
a(16)-a(18) from A006058 by Jean-François Alcover, Jan 01 2020
Comments