A326914 Number T(n,k) of colored integer partitions of n using all colors of a k-set such that all parts have different color patterns and a pattern for part i has i distinct colors in increasing order; triangle T(n,k), n>=0, min(j:A001787(j)>=n)<=k<=n, read by rows.
1, 1, 2, 2, 5, 1, 12, 15, 18, 64, 52, 20, 166, 340, 203, 18, 332, 1315, 1866, 877, 15, 566, 3895, 9930, 10710, 4140, 11, 864, 9770, 39960, 74438, 64520, 21147, 6, 1214, 21848, 134871, 386589, 564508, 408096, 115975, 3, 1596, 44880, 402756, 1668338, 3652712
Offset: 0
Examples
T(4,3) = 12: 3abc1a, 3abc1b, 3abc1c, 2ab2ac, 2ab2bc, 2ac2bc, 2ab1a1c, 2ab1b1c, 2ac1a1b, 2ac1b1c, 2bc1a1b, 2bc1a1c. Triangle T(n,k) begins: 1; 1; 2; 2, 5; 1, 12, 15; 18, 64, 52; 20, 166, 340, 203; 18, 332, 1315, 1866, 877; 15, 566, 3895, 9930, 10710, 4140; 11, 864, 9770, 39960, 74438, 64520, 21147; 6, 1214, 21848, 134871, 386589, 564508, 408096, 115975; ...
Links
- Alois P. Heinz, Rows n = 0..200, flattened
- Wikipedia, Partition (number theory)
Crossrefs
Programs
-
Maple
C:= binomial: g:= proc(n) option remember; n*2^(n-1) end: h:= proc(n) option remember; local k; for k from `if`(n=0, 0, h(n-1)) do if g(k)>=n then return k fi od end: b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add( b(n-i*j, min(n-i*j, i-1), k)*C(C(k, i), j), j=0..n/i))) end: T:= (n, k)-> add(b(n$2, i)*(-1)^(k-i)*C(k, i), i=0..k): seq(seq(T(n, k), k=h(n)..n), n=0..12);
-
Mathematica
c = Binomial; g[n_] := g[n] = n*2^(n - 1); h[n_] := h[n] = Module[{k}, For[k = If[n == 0, 0, h[n - 1]], True, k++, If[g[k] >= n, Return[k]]]]; b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, Min[n - i*j, i - 1], k] c[c[k, i], j], {j, 0, n/i}]]]; T[n_, k_] := Sum[b[n, n, i] (-1)^(k - i) c[k, i], {i, 0, k}]; Table[Table[T[n, k], {k, h[n], n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 17 2020, after Alois P. Heinz *)
Comments