A326926 Triangular array read by rows: row n shows the coefficients of this polynomial of degree n: (1/n!)*(numerator of n-th derivative of 1/(1-x+x^2)).
1, 1, -2, 0, -3, 3, -1, 0, 6, -4, -1, 5, 0, -10, 5, 0, 6, -15, 0, 15, -6, 1, 0, -21, 35, 0, -21, 7, 1, -8, 0, 56, -70, 0, 28, -8, 0, -9, 36, 0, -126, 126, 0, -36, 9, -1, 0, 45, -120, 0, 252, -210, 0, 45, -10, -1, 11, 0, -165, 330, 0, -462, 330, 0, -55, 11, 0
Offset: 0
Examples
First eight rows: 1; 1, -2; 0, -3, 3; -1, 0, 6, -4; -1, 5, 0, -10, 5; 0, 6, -15, 0, 15, -6; 1, 0, -21, 35, 0, -21, 7; 1, -8, 0, 56, -70, 0, 28, -8; First eight polynomials: 1 1 - 2*x -3*x + 3*x^2 = 3 (-1 + x)*x -1 + 6*x^2 - 4*x^3 = (-1 + 2*x) (1 + 2*x - 2*x^2) -1 + 5*x - 10*x^3 + 5*x^4 6*x - 15*x^2 + 15*x^4 - 6*x^5 = -3*x*(-2 + x)*(-1 + x)*(1 + x)*(-1 + 2*x) 1 - 21*x^2 + 35*x^3 - 21*x^5 + 7*x^6 1 - 8*x + 56*x^3 - 70*x^4 + 28*x^6 - 8*x^7 = -(-1 + 2*x)*(-1 - 2*x + 2*x^2)*(-1 + 8*x - 6*x^2 - 4*x^3 + 2*x^4)
Crossrefs
Cf. A326933.
Comments