A326957 Total number of noncomposite parts in all partitions of n.
0, 1, 3, 6, 11, 19, 32, 50, 77, 115, 170, 244, 348, 486, 675, 923, 1253, 1682, 2246, 2968, 3904, 5094, 6616, 8533, 10962, 13997, 17808, 22538, 28426, 35689, 44670, 55678, 69199, 85692, 105826, 130261, 159935, 195778, 239092, 291191, 353854, 428925, 518848
Offset: 0
Keywords
Examples
For n = 6 we have: -------------------------------------- . Number of Partitions noncomposite of 6 parts -------------------------------------- 6 .......................... 0 3 + 3 ...................... 2 4 + 2 ...................... 1 2 + 2 + 2 .................. 3 5 + 1 ...................... 2 3 + 2 + 1 .................. 3 4 + 1 + 1 .................. 2 2 + 2 + 1 + 1 .............. 4 3 + 1 + 1 + 1 .............. 4 2 + 1 + 1 + 1 + 1 .......... 5 1 + 1 + 1 + 1 + 1 + 1 ...... 6 ------------------------------------ Total ..................... 32 So a(6) = 32.
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, n], b(n, i-1)+ (p-> p+[0, `if`(isprime(i), p[1], 0)])(b(n-i, min(n-i, i)))) end: a:= n-> b(n$2)[2]: seq(a(n), n=0..50); # Alois P. Heinz, Aug 13 2019
-
Mathematica
b[n_] := Sum[PrimeNu[k] PartitionsP[n-k], {k, 1, n}]; c[n_] := SeriesCoefficient[Product[1/(1-x^k), {k, 1, n}]/(1-x), {x, 0, n}]; a[n_] := b[n] + c[n-1]; a /@ Range[0, 50] (* Jean-François Alcover, Nov 15 2020 *)