A326959 Number of T_0 set-systems covering a subset of {1..n} that are closed under intersection.
1, 2, 5, 22, 297, 20536, 16232437, 1063231148918, 225402337742595309857
Offset: 0
Examples
The a(0) = 1 through a(3) = 22 set-systems: {} {} {} {} {{1}} {{1}} {{1}} {{2}} {{2}} {{1},{1,2}} {{3}} {{2},{1,2}} {{1},{1,2}} {{1},{1,3}} {{2},{1,2}} {{2},{2,3}} {{3},{1,3}} {{3},{2,3}} {{1},{1,2},{1,3}} {{2},{1,2},{2,3}} {{3},{1,3},{2,3}} {{1},{1,2},{1,2,3}} {{1},{1,3},{1,2,3}} {{2},{1,2},{1,2,3}} {{2},{2,3},{1,2,3}} {{3},{1,3},{1,2,3}} {{3},{2,3},{1,2,3}} {{1},{1,2},{1,3},{1,2,3}} {{2},{1,2},{2,3},{1,2,3}} {{3},{1,3},{2,3},{1,2,3}}
Crossrefs
Programs
-
Mathematica
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}]; Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],UnsameQ@@dual[#]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}]
Formula
Binomial transform of A309615.
Extensions
a(5)-a(8) from Andrew Howroyd, Aug 14 2019
Comments