A326962 Number T(n,k) of colored integer partitions of n using all colors of a k-set such that all parts have different color patterns and a pattern for part i has i distinct colors in increasing order; triangle T(n,k), k>=0, k<=n<=k*2^(k-1), read by columns.
1, 1, 2, 2, 1, 5, 12, 18, 20, 18, 15, 11, 6, 3, 1, 15, 64, 166, 332, 566, 864, 1214, 1596, 1975, 2320, 2600, 2780, 2842, 2780, 2600, 2320, 1979, 1608, 1238, 908, 626, 404, 246, 136, 69, 32, 12, 4, 1, 52, 340, 1315, 3895, 9770, 21848, 44880, 86275, 157140
Offset: 0
Examples
T(4,3) = 12: 3abc1a, 3abc1b, 3abc1c, 2ab2ac, 2ab2bc, 2ac2bc, 2ab1a1c, 2ab1b1c, 2ac1a1b, 2ac1b1c, 2bc1a1b, 2bc1a1c. Triangle T(n,k) begins: 1; 1; 2; 2, 5; 1, 12, 15; 18, 64, 52; 20, 166, 340, 203; 18, 332, 1315, 1866, 877; 15, 566, 3895, 9930, 10710, 4140; 11, 864, 9770, 39960, 74438, 64520, 21147; 6, 1214, 21848, 134871, 386589, 564508, 408096, 115975; ...
Links
- Alois P. Heinz, Columns k = 0..10, flattened
- Wikipedia, Partition (number theory)
Crossrefs
Programs
-
Maple
C:= binomial: b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add( b(n-i*j, min(n-i*j, i-1), k)*C(C(k, i), j), j=0..n/i))) end: T:= (n, k)-> add(b(n$2, i)*(-1)^(k-i)*C(k, i), i=0..k): seq(seq(T(n, k), n=k..k*2^(k-1)), k=0..5);
-
Mathematica
c = Binomial; b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, Min[n - i*j, i - 1], k] c[c[k, i], j], {j, 0, n/i}]]]; T[n_, k_] := Sum[b[n, n, i] (-1)^(k-i) c[k, i], {i, 0, k}]; Table[Table[T[n, k], {n, k, k 2^(k-1)}], {k, 0, 5}] // Flatten (* Jean-François Alcover, Dec 17 2020, after Alois P. Heinz *)
Comments