cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A278073 Triangle read by rows, coefficients of the polynomials P(m, n) = Sum_{k=1..n} binomial(m*n, m*k)* P(m, n-k)*z with P(m, 0) = 1 and m = 3.

Original entry on oeis.org

1, 0, 1, 0, 1, 20, 0, 1, 168, 1680, 0, 1, 1364, 55440, 369600, 0, 1, 10920, 1561560, 33633600, 168168000, 0, 1, 87380, 42771456, 2385102720, 34306272000, 137225088000, 0, 1, 699048, 1160164320, 158411809920, 5105916816000, 54752810112000, 182509367040000
Offset: 0

Views

Author

Peter Luschny, Jan 22 2017

Keywords

Examples

			Triangle begins:
[1]
[0, 1]
[0, 1,    20]
[0, 1,   168,    1680]
[0, 1,  1364,   55440,   369600]
[0, 1, 10920, 1561560, 33633600, 168168000]
		

Crossrefs

Cf. A014606 (diagonal), A243664 (row sums), A002115 (alternating row sums), A281479 (central coefficients), A327023 (refinement).
Cf. A097805 (m=0), A131689 (m=1), A241171 (m=2), A278074 (m=4).

Programs

  • Maple
    P := proc(m, n) option remember; if n = 0 then 1 else
    add(binomial(m*n, m*k)*P(m, n-k)*x, k=1..n) fi end:
    for n from 0 to 6 do PolynomialTools:-CoefficientList(P(3,n), x) od;
    # Alternatively:
    A278073_row := proc(n)
    1/(1-t*((1/3)*exp(x)+(2/3)*exp(-(1/2)*x)*cos((1/2)*x*sqrt(3))-1));
    expand(series(%,x,3*n+1)); (3*n)!*coeff(%,x,3*n);
    PolynomialTools:-CoefficientList(%,t) end:
    for n from 0 to 6 do A278073_row(n) od;
  • Mathematica
    With[{m = 3}, Table[Expand[j!*SeriesCoefficient[1/(1 - t*(MittagLefflerE[m, x^m] - 1)), {x, 0, j}]], {j, 0, 21, m}]];
    Function[arg, CoefficientList[arg, t]] /@ % // Flatten
  • Sage
    R = PowerSeriesRing(ZZ, 'x')
    x = R.gen().O(30)
    @cached_function
    def P(m, n):
        if n == 0: return R(1)
        return expand(sum(binomial(m*n, m*k)*P(m, n-k)*x for k in (1..n)))
    def A278073_row(n): return list(P(3, n))
    for n in (0..6): print(A278073_row(n)) # Peter Luschny, Mar 24 2020

Formula

E.g.f.: 1/(1-t*((1/3)*exp(x)+(2/3)*exp(-(1/2)*x)*cos((1/2)*x*sqrt(3))-1)), nonzero terms.

A327022 Partition triangle read by rows. Number of ordered set partitions of the set {1, 2, ..., 2*n} with all block sizes divisible by 2.

Original entry on oeis.org

1, 1, 1, 6, 1, 30, 90, 1, 56, 70, 1260, 2520, 1, 90, 420, 3780, 9450, 75600, 113400, 1, 132, 990, 924, 8910, 83160, 34650, 332640, 1247400, 6237000, 7484400, 1, 182, 2002, 6006, 18018, 270270, 252252, 630630, 1081080, 15135120, 12612600, 37837800, 189189000, 681080400, 681080400
Offset: 0

Views

Author

Peter Luschny, Aug 27 2019

Keywords

Comments

We call an irregular triangle T a partition triangle if T(n, k) is defined for n >= 0 and 0 <= k < A000041(n).
T_{m}(n, k) gives the number of ordered set partitions of the set {1, 2, ..., m*n} into sized blocks of shape m*P(n, k), where P(n, k) is the k-th integer partition of n in the 'canonical' order A080577. Here we assume the rows of A080577 to be 0-based and m*[a, b, c,..., h] = [m*a, m*b, m*c,..., m*h]. Here is case m = 2. For instance 2*P(4, .) = [[8], [6, 2], [4, 4], [4, 2, 2], [2, 2, 2, 2]].

Examples

			Triangle starts (note the subdivisions by ';' (A072233)):
[0] [1]
[1] [1]
[2] [1;   6]
[3] [1;  30;  90]
[4] [1;  56,  70; 1260; 2520]
[5] [1;  90, 420; 3780, 9450; 75600; 113400]
[6] [1; 132, 990,  924; 8910, 83160,  34650; 332640, 1247400; 6237000; 7484400]
.
T(4, 1) = 56 because [6, 2] is the integer partition 2*P(4, 1) in the canonical order and there are 28 set partitions which have the shape [6, 2] (an example is {{1, 3, 4, 5, 6, 8}, {2, 7}}). Finally, since the order of the sets is taken into account, one gets 2!*28 = 56.
		

Crossrefs

Row sums: A094088, alternating row sums: A028296, main diagonal: A000680, central column A281478, by length: A241171.
Cf. A178803 (m=0), A133314 (m=1), this sequence (m=2), A327023 (m=3), A327024 (m=4).

Programs

  • Sage
    def GenOrdSetPart(m, n):
        shapes = ([x*m for x in p] for p in Partitions(n))
        return [factorial(len(s))*SetPartitions(sum(s), s).cardinality() for s in shapes]
    def A327022row(n): return GenOrdSetPart(2, n)
    for n in (0..6): print(A327022row(n))

A327024 Ordered set partitions of the set {1, 2, ..., 4*n} with all block sizes divisible by 4, irregular triangle T(n, k) for n >= 0 and 0 <= k < A000041(n), read by rows.

Original entry on oeis.org

1, 1, 1, 70, 1, 990, 34650, 1, 3640, 12870, 2702700, 63063000, 1, 9690, 251940, 26453700, 187065450, 17459442000, 305540235000, 1, 21252, 1470942, 2704156, 154448910, 8031343320, 9465511770, 374796021600, 3975514943400, 231905038365000, 3246670537110000
Offset: 0

Views

Author

Peter Luschny, Aug 27 2019

Keywords

Comments

T_{m}(n, k) gives the number of ordered set partitions of the set {1, 2, ..., m*n} into sized blocks of shape m*P(n, k), where P(n, k) is the k-th integer partition of n in the 'canonical' order A080577. Here we assume the rows of A080577 to be 0-based and m*[a, b, c,..., h] = [m*a, m*b, m*c,..., m*h]. Here is case m = 4. For instance 4*P(4, .) = [[16], [12, 4], [8, 8], [8, 4, 4], [4, 4, 4, 4]].

Examples

			Triangle starts (note the subdivisions by ';' (A072233)):
[0] [1]
[1] [1]
[2] [1;    70]
[3] [1;   990;   34650]
[4] [1;  3640,   12870;  2702700;  63063000]
[5] [1;  9690,  251940; 26453700, 187065450; 17459442000; 305540235000]
[6] [1; 21252, 1470942,  2704156; 154448910,  8031343320,   9465511770;
     374796021600, 3975514943400; 231905038365000; 3246670537110000]
.
T(4, 1) = 3640 because [12, 4] is the integer partition 4*P(4, 1) in the canonical order and there are 1820 set partitions which have the shape [12, 4]. Finally, since the order of the sets is taken into account, one gets 2!*1820 = 3640.
		

Crossrefs

Row sums: A243665, alternating row sums: A211212, main diagonal: A014608, central column: A281480, by length: A278074.
Cf. A178803 (m=0), A133314 (m=1), A327022 (m=2), A327023 (m=3), this sequence (m=4).

Programs

  • Sage
    # uses[GenOrdSetPart from A327022]
    def A327024row(n): return GenOrdSetPart(4, n)
    for n in (0..6): print(A327024row(n))
Showing 1-3 of 3 results.