cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327032 a(n) = T(n, 4) with T(n, k) = Sum_{d|k} phi(d)*binomial(n - 1 + k/d, k/d).

Original entry on oeis.org

0, 4, 12, 27, 53, 95, 159, 252, 382, 558, 790, 1089, 1467, 1937, 2513, 3210, 4044, 5032, 6192, 7543, 9105, 10899, 12947, 15272, 17898, 20850, 24154, 27837, 31927, 36453, 41445, 46934, 52952, 59532, 66708, 74515, 82989, 92167, 102087, 112788, 124310, 136694
Offset: 0

Views

Author

Peter Luschny, Aug 25 2019

Keywords

Crossrefs

Cf. A327031 (square array), A000004 (k=0), A001477 (k=1), A000096 (k=2), A255993 (k=3 conj.), this sequence (k=4).

Programs

  • Maple
    a := n -> n*(n*(n*(n + 6) + 23) + 66)/24:
    seq(a(n), n=0..41);
  • Mathematica
    Table[(66n+23n^2+6n^3+n^4)/24,{n,0,50}] (* Harvey P. Dale, Mar 10 2020 *)
  • PARI
    a(n)=n*(n*(n*(n+6)+23)+66)/24 \\ Charles R Greathouse IV, Oct 21 2022

Formula

G.f.: ((2*x^2 - 3*x + 2)*(x - 2)*x)/(x - 1)^5.
a(n) = ((7*n^2 - 14*n - 9)*a(n-1) - 2*(2*n^2 + n - 3)*a(n-2))/(3*(n^2 - 4*n + 3)) for n >= 4.
a(n) = n*(n*(n*(n + 6) + 23) + 66)/24.