A327037 Number of pairwise intersecting set-systems covering n vertices where every two vertices appear together in some edge (cointersecting).
1, 1, 3, 21, 913, 1183295, 909142733955, 291200434282476769116160
Offset: 0
Examples
The a(0) = 1 through a(3) = 21 set-systems: {} {{1}} {{1,2}} {{1,2,3}} {{1},{1,2}} {{1},{1,2,3}} {{2},{1,2}} {{2},{1,2,3}} {{3},{1,2,3}} {{1,2},{1,2,3}} {{1,3},{1,2,3}} {{2,3},{1,2,3}} {{1},{1,2},{1,2,3}} {{1},{1,3},{1,2,3}} {{1,2},{1,3},{2,3}} {{2},{1,2},{1,2,3}} {{2},{2,3},{1,2,3}} {{3},{1,3},{1,2,3}} {{3},{2,3},{1,2,3}} {{1,2},{1,3},{1,2,3}} {{1,2},{2,3},{1,2,3}} {{1,3},{2,3},{1,2,3}} {{1},{1,2},{1,3},{1,2,3}} {{2},{1,2},{2,3},{1,2,3}} {{3},{1,3},{2,3},{1,2,3}} {{1,2},{1,3},{2,3},{1,2,3}}
Crossrefs
Programs
-
Mathematica
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}]; stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]]; stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],Intersection[#1,#2]=={}&],Union@@#==Range[n]&&stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,4}]
Formula
Inverse binomial transform of A327038.
Extensions
a(6)-a(7) from Christian Sievers, Aug 18 2024
Comments