cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A327045 Expansion of Product_{k>=1} (1 + x^k) * (1 + x^(2*k)) * (1 + x^(3*k)).

Original entry on oeis.org

1, 1, 2, 4, 5, 8, 13, 17, 24, 36, 47, 64, 89, 115, 152, 204, 260, 336, 438, 552, 702, 896, 1117, 1400, 1758, 2171, 2688, 3332, 4079, 5000, 6131, 7446, 9048, 10992, 13255, 15984, 19264, 23081, 27644, 33084, 39408, 46912, 55797, 66107, 78264, 92572, 109140
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 16 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^k) * (1+x^(2*k)) * (1+x^(3*k)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ 11^(1/4) * exp(sqrt(11*n/2)*Pi/3) / (2^(13/4)*sqrt(3)*n^(3/4)).

A327046 Expansion of Product_{k>=1} (1 + x^k) * (1 + x^(2*k)) * (1 + x^(3*k)) * (1 + x^(4*k)).

Original entry on oeis.org

1, 1, 2, 4, 6, 9, 15, 21, 30, 45, 62, 85, 120, 161, 216, 293, 385, 505, 667, 862, 1112, 1438, 1833, 2330, 2965, 3733, 4688, 5887, 7334, 9114, 11319, 13970, 17203, 21162, 25905, 31643, 38605, 46911, 56891, 68904, 83179, 100224, 120603, 144719, 173360, 207396
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 16 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^k) * (1+x^(2*k)) * (1+x^(3*k)) * (1+x^(4*k)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ sqrt(5) * exp(5*Pi*sqrt(n)/6) / (16*sqrt(3)*n^(3/4)).

A327050 Expansion of Product_{k>=1} (1 + x^k) * (1 + x^(2*k)) * (1 + x^(3*k)) * (1 + x^(4*k)) * (1 + x^(5*k)) / ((1 - x^k) * (1 - x^(2*k)) * (1 - x^(3*k)) * (1 - x^(4*k)) * (1 - x^(5*k))).

Original entry on oeis.org

1, 2, 6, 14, 32, 66, 136, 260, 494, 902, 1620, 2832, 4890, 8260, 13792, 22664, 36824, 59060, 93814, 147364, 229490, 354052, 541916, 822736, 1240292, 1856246, 2760368, 4078522, 5990900, 8749052, 12708920, 18363656, 26404386, 37783040, 53820120, 76324576
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 16 2019

Keywords

Comments

Convolution of A327047 and A327044.
In general, for fixed m>=1, if g.f. = Product_{k>=1} (Product_{j=1..m} (1 + x^(j*k)) / (1 - x^(j*k))), then a(n) ~ sqrt(Gamma(m+1)) * HarmonicNumber(m)^((m+1)/4) * exp(Pi*sqrt(HarmonicNumber(m)*n)) / (2^(3*(m+1)/2) * n^((m+3)/4)).

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^k) * (1+x^(2*k)) * (1+x^(3*k)) * (1+x^(4*k)) * (1+x^(5*k)) / ((1-x^k) * (1-x^(2*k)) * (1-x^(3*k)) * (1-x^(4*k)) * (1-x^(5*k))), {k, 1, nmax}], {x, 0, nmax}], x]
    With[{nn=50,xk=x^(k Range[5])},CoefficientList[Series[Product[Times@@(1+xk)/Times@@(1-xk),{k,nn}],{x,0,nn}],x]] (* Harvey P. Dale, Jul 23 2023 *)

Formula

a(n) ~ 137^(3/2) * exp(sqrt(137*n/15)*Pi/2) / (15*2^(21/2)*n^2).
Showing 1-3 of 3 results.