A327053 Number of T_0 (costrict) set-systems covering n vertices where every two vertices appear together in some edge (cointersecting).
1, 1, 3, 62, 24710, 2076948136, 9221293198653529144, 170141182628636920684331812494864430896
Offset: 0
Examples
The a(1) = 1 through a(2) = 3 set-systems: {} {{1}} {{1},{1,2}} {{2},{1,2}} {{1},{2},{1,2}} The a(3) = 62 set-systems: 1 2 123 1 2 3 123 1 2 12 13 23 1 2 3 12 13 23 1 2 3 12 13 23 123 1 3 123 1 12 13 23 1 2 3 12 123 1 2 3 12 13 123 2 3 123 1 2 12 123 1 2 3 13 123 1 2 3 12 23 123 1 12 123 1 2 13 123 1 2 3 23 123 1 2 3 13 23 123 1 13 123 1 2 23 123 1 3 12 13 23 1 2 12 13 23 123 12 13 23 1 3 12 123 2 3 12 13 23 1 3 12 13 23 123 2 12 123 1 3 13 123 1 2 12 13 123 2 3 12 13 23 123 2 23 123 1 3 23 123 1 2 12 23 123 3 13 123 2 12 13 23 1 2 13 23 123 3 23 123 2 3 12 123 1 3 12 13 123 12 13 123 2 3 13 123 1 3 12 23 123 12 23 123 2 3 23 123 1 3 13 23 123 13 23 123 3 12 13 23 2 3 12 13 123 1 12 13 123 2 3 12 23 123 1 12 23 123 2 3 13 23 123 1 13 23 123 1 12 13 23 123 2 12 13 123 2 12 13 23 123 2 12 23 123 3 12 13 23 123 2 13 23 123 3 12 13 123 3 12 23 123 3 13 23 123 12 13 23 123
Crossrefs
Programs
-
Mathematica
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}]; stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&UnsameQ@@dual[#]&&stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,3}]
Formula
Inverse binomial transform of A327052.
Extensions
a(5)-a(7) from Christian Sievers, Feb 04 2024
Comments