A327112 Number of set-systems covering n vertices with cut-connectivity >= 2, or 2-cut-connected set-systems.
0, 0, 4, 72, 29856
Offset: 0
Examples
Non-isomorphic representatives of the a(3) = 72 set-systems: {{123}} {{3}{123}} {{23}{123}} {{2}{3}{123}} {{1}{23}{123}} {{3}{23}{123}} {{12}{13}{23}} {{13}{23}{123}} {{1}{2}{3}{123}} {{1}{3}{23}{123}} {{2}{3}{23}{123}} {{3}{12}{13}{23}} {{2}{13}{23}{123}} {{3}{13}{23}{123}} {{12}{13}{23}{123}} {{1}{2}{3}{23}{123}} {{2}{3}{12}{13}{23}} {{1}{2}{13}{23}{123}} {{2}{3}{13}{23}{123}} {{3}{12}{13}{23}{123}} {{1}{2}{3}{12}{13}{23}} {{1}{2}{3}{13}{23}{123}} {{2}{3}{12}{13}{23}{123}} {{1}{2}{3}{12}{13}{23}{123}}
Crossrefs
Covering 1-cut-connected antichains (clutters) are A048143, if we assume A048143(0) = A048143(1) =0.
Covering set-systems with cut-connectivity 2 are A327113.
2-vertex-connected integer partitions are A322387.
BII-numbers of set-systems with cut-connectivity >= 2 are A327101.
The cut-connectivity of the set-system with BII-number n is A326786(n).
Programs
-
Mathematica
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; vConn[sys_]:=If[Length[csm[sys]]!=1,0,Min@@Length/@Select[Subsets[Union@@sys],Function[del,Length[csm[DeleteCases[DeleteCases[sys,Alternatives@@del,{2}],{}]]]!=1]]]; Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&vConn[#]>=2&]],{n,0,3}]
Comments