A327116 Number T(n,k) of colored integer partitions of n using all colors of a k-set such that all parts have different color patterns and a pattern for part i has i colors in (weakly) increasing order; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 1, 2, 0, 2, 6, 5, 0, 2, 15, 27, 15, 0, 3, 32, 102, 124, 52, 0, 4, 65, 319, 656, 600, 203, 0, 5, 124, 897, 2780, 4210, 3084, 877, 0, 6, 230, 2346, 10305, 23040, 27567, 16849, 4140, 0, 8, 414, 5818, 34864, 108135, 188284, 186095, 97640, 21147
Offset: 0
Examples
T(3,2) = 6; 3aab, 3abb, 2aa1b, 2ab1a, 2ab1b, 2bb1a. Triangle T(n,k) begins: 1; 0, 1; 0, 1, 2; 0, 2, 6, 5; 0, 2, 15, 27, 15; 0, 3, 32, 102, 124, 52; 0, 4, 65, 319, 656, 600, 203; 0, 5, 124, 897, 2780, 4210, 3084, 877; 0, 6, 230, 2346, 10305, 23040, 27567, 16849, 4140; 0, 8, 414, 5818, 34864, 108135, 188284, 186095, 97640, 21147; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- Wikipedia, Partition (number theory)
Crossrefs
Programs
-
Maple
C:= binomial: b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add( b(n-i*j, min(n-i*j, i-1), k)*C(C(k+i-1, i), j), j=0..n/i))) end: T:= (n, k)-> add(b(n$2, i)*(-1)^(k-i)*C(k, i), i=0..k): seq(seq(T(n, k), k=0..n), n=0..12);
-
Mathematica
c = Binomial; b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i j, Min[n - i j, i - 1], k] c[c[k + i - 1, i], j], {j, 0, n/i}]]]; T[n_, k_] := Sum[b[n, n, i] (-1)^(k - i) c[k, i], {i, 0, k}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 27 2020, after Alois P. Heinz *)
Formula
Sum_{k=1..n} k * T(n,k) = A327557(n).