A327129 Number of connected set-systems covering n vertices with at least one edge whose removal (along with any non-covered vertices) disconnects the set-system (non-spanning edge-connectivity 1).
0, 1, 2, 35, 2804
Offset: 0
Examples
The a(3) = 35 set-systems: {123} {1}{12}{23} {1}{2}{12}{13} {1}{2}{3}{12}{13} {1}{13}{23} {1}{2}{12}{23} {1}{2}{3}{12}{23} {1}{2}{123} {1}{2}{13}{23} {1}{2}{3}{13}{23} {1}{3}{123} {1}{2}{3}{123} {1}{2}{3}{12}{123} {2}{12}{13} {1}{3}{12}{13} {1}{2}{3}{13}{123} {2}{13}{23} {1}{3}{12}{23} {1}{2}{3}{23}{123} {2}{3}{123} {1}{3}{13}{23} {3}{12}{13} {2}{3}{12}{13} {3}{12}{23} {2}{3}{12}{23} {1}{23}{123} {2}{3}{13}{23} {2}{13}{123} {1}{2}{13}{123} {3}{12}{123} {1}{2}{23}{123} {1}{3}{12}{123} {1}{3}{23}{123} {2}{3}{12}{123} {2}{3}{13}{123}
Programs
-
Mathematica
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]]; Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&eConn[#]==1&]],{n,0,3}]
Formula
Inverse binomial transform of A327196.
Comments