A327197 Number of set-systems covering n vertices with cut-connectivity 1.
0, 1, 0, 24, 1984
Offset: 0
Examples
The a(3) = 24 set-systems: {12}{13} {1}{12}{13} {1}{2}{12}{13} {1}{2}{3}{12}{13} {12}{23} {1}{12}{23} {1}{2}{12}{23} {1}{2}{3}{12}{23} {13}{23} {1}{13}{23} {1}{2}{13}{23} {1}{2}{3}{13}{23} {2}{12}{13} {1}{3}{12}{13} {2}{12}{23} {1}{3}{12}{23} {2}{13}{23} {1}{3}{13}{23} {3}{12}{13} {2}{3}{12}{13} {3}{12}{23} {2}{3}{12}{23} {3}{13}{23} {2}{3}{13}{23}
Crossrefs
Programs
-
Mathematica
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]]; Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&cutConnSys[Range[n],#]==1&]],{n,0,3}]
Formula
Inverse binomial transform of A327128.
Comments