A327231 Number of labeled simple connected graphs covering a subset of {1..n} with at least one non-endpoint bridge (non-spanning edge-connectivity 1).
0, 0, 1, 3, 18, 250, 5475, 191541, 11065572, 1104254964, 201167132805, 69828691941415, 47150542741904118, 62354150876493659118, 161919876753750972738791, 827272271567137357352991705, 8331016130913639432634637862600, 165634930763383717802534343776893928
Offset: 0
Keywords
Examples
The a(2) = 1 through a(4) = 18 edge-sets: {12} {12} {12} {13} {13} {23} {14} {23} {24} {34} {12,13,24} {12,13,34} {12,14,23} {12,14,34} {12,23,34} {12,24,34} {13,14,23} {13,14,24} {13,23,24} {13,24,34} {14,23,24} {14,23,34}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
Crossrefs
Programs
-
Mathematica
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; edgeConnSys[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]]; Table[Length[Select[Subsets[Subsets[Range[n],{2}]],edgeConnSys[#]==1&]],{n,0,4}]
Formula
Binomial transform of A327079.
Extensions
Terms a(6) and beyond from Andrew Howroyd, Sep 11 2019
Comments