A327245 Number T(n,k) of colored compositions of n using all colors of a k-set such that all parts have different color patterns and the patterns for parts i have i colors in (weakly) increasing order; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 1, 3, 0, 3, 10, 13, 0, 3, 39, 87, 75, 0, 5, 100, 510, 836, 541, 0, 11, 303, 2272, 7042, 9025, 4683, 0, 13, 782, 9999, 46628, 104255, 109110, 47293, 0, 19, 2009, 39369, 284319, 948725, 1662273, 1466003, 545835, 0, 27, 5388, 154038, 1577256, 7676830, 19798096, 28538496, 21713032, 7087261
Offset: 0
Examples
T(3,1) = 3: 3aaa, 2aa1a, 1a2aa. T(3,2) = 10: 3aab, 3abb, 2aa1b, 2ab1a, 2ab1b, 2bb1a, 1a2ab, 1a2bb, 1b2aa, 1b2ab. T(3,3) = 13: 3abc, 2ab1c, 2ac1b, 2bc1a, 1a2bc, 1b2ac, 1c2ab, 1a1b1c, 1a1c1b, 1b1a1c, 1b1c1a, 1c1a1b, 1c1b1a. Triangle T(n,k) begins: 1; 0, 1; 0, 1, 3; 0, 3, 10, 13; 0, 3, 39, 87, 75; 0, 5, 100, 510, 836, 541; 0, 11, 303, 2272, 7042, 9025, 4683; 0, 13, 782, 9999, 46628, 104255, 109110, 47293; 0, 19, 2009, 39369, 284319, 948725, 1662273, 1466003, 545835; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
C:= binomial: b:= proc(n, i, k, p) option remember; `if`(n=0, p!, `if`(i<1, 0, add( b(n-i*j, min(n-i*j, i-1), k, p+j)*C(C(k+i-1, i), j), j=0..n/i))) end: T:= (n, k)-> add(b(n$2, i, 0)*(-1)^(k-i)*C(k, i), i=0..k): seq(seq(T(n, k), k=0..n), n=0..10);
-
Mathematica
c = Binomial; b[n_, i_, k_, p_] := b[n, i, k, p] = If[n == 0, p!, If[i < 1, 0, Sum[b[n - i*j, Min[n - i*j, i-1], k, p + j] c[c[k + i - 1, i], j], {j, 0, n/i}]]]; T[n_, k_] := Sum[b[n, n, i, 0] (-1)^(k - i) c[k, i], {i, 0, k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 29 2020, after Alois P. Heinz *)
Formula
Sum_{k=1..n} k * T(n,k) = A327588(n).