cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A270913 Coefficient of x^n in Product_{k>=1} (1+x^k)^n.

Original entry on oeis.org

1, 1, 3, 13, 51, 206, 855, 3585, 15155, 64525, 276278, 1188353, 5130999, 22226049, 96544003, 420368858, 1834203955, 8018057345, 35107961175, 153950675585, 675978772326, 2971700764941, 13078268135683, 57613905606273, 254038914924791, 1121081799217231
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 25 2016

Keywords

Comments

From Peter Bala, Apr 18 2023: (Start)
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k.
Conjecture: the supercongruence a(p) == p + 1 (mod p^2) holds for all primes p. (End)

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
         `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    g:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, b(n),
           (q-> add(g(j, q)*g(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> g(n$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jan 31 2021
  • Mathematica
    Table[SeriesCoefficient[Product[(1+x^k)^n, {k, 1, n}], {x, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[QPochhammer[-1, x]^n, {x, 0, n}]/2^n, {n, 0, 25}]
    Table[SeriesCoefficient[Exp[n*Sum[(-1)^j*x^j/(j*(x^j - 1)), {j, 1, n}]], {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, May 19 2018 *)
  • PARI
    {a(n)=polcoeff(prod(k=1, n, (1 + x^k +x*O(x^n))^n), n)}
    for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Aug 26 2019

Formula

a(n) ~ c * d^n / sqrt(n), where d = A270914 = 4.5024767476173544877385939327007... and c = A327280 = 0.260542233142438469433860832160...

A270914 Decimal expansion of a constant related to the asymptotics of A270913.

Original entry on oeis.org

4, 5, 0, 2, 4, 7, 6, 7, 4, 7, 6, 1, 7, 3, 5, 4, 4, 8, 7, 7, 3, 8, 5, 9, 3, 9, 3, 2, 7, 0, 0, 7, 8, 4, 4, 0, 6, 7, 6, 3, 1, 2, 8, 7, 5, 6, 0, 9, 1, 6, 2, 1, 6, 3, 3, 4, 6, 4, 5, 4, 0, 4, 2, 4, 0, 8, 8, 8, 4, 0, 3, 2, 7, 9, 0, 6, 7, 7, 3, 2, 0, 2, 2, 1, 9, 2, 0, 6, 9, 6, 2, 5, 2, 5, 5, 1, 1, 4, 5, 3, 7, 2, 9, 6
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 25 2016

Keywords

Comments

This constant is very close to exp(5*Pi/(6*sqrt(2))) / sqrt(2) = 4.502476748630924546525119125234175537729... - Vaclav Kotesovec, May 17 2018

Examples

			4.502476747617354487738593932700784406763128756091621633464540424...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1/r /. FindRoot[{2*s == QPochhammer[-1, r*s], r*Derivative[0, 1][QPochhammer][-1, r*s] == 2}, {r, 1/2}, {s, 1/2}, WorkingPrecision -> 120], 10, 105][[1]] (* Vaclav Kotesovec, Sep 26 2023 *)

Formula

Equals limit n->infinity A270913(n)^(1/n).

A327214 Self-convolution of A270913.

Original entry on oeis.org

1, 2, 7, 32, 137, 592, 2597, 11442, 50567, 224112, 995392, 4428372, 19727877, 87983202, 392755207, 1754625632, 7844003907, 35086658052, 157023432677, 703037135122, 3148915010832, 14108913792342, 63235380631747, 283495965998772, 1271282293531077, 5702105357347602
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 26 2019

Keywords

Crossrefs

Programs

  • Mathematica
    A270913[n_]:=SeriesCoefficient[Product[(1+x^k)^n, {k, 1, n}], {x, 0, n}];
    Table[Sum[A270913[k]*A270913[n-k], {k, 0, n}], {n, 0, 25}]

Formula

a(n) ~ c^2 * Pi * d^n, where d = A270914 = 4.5024767476173544877385939327... and c = A327280 = 0.260542233142438469433860832160... (see A270913).

A327279 Decimal expansion of a constant related to A008485 and A327215.

Original entry on oeis.org

2, 6, 8, 0, 1, 5, 2, 1, 2, 7, 1, 0, 7, 3, 3, 3, 1, 5, 6, 8, 6, 9, 5, 3, 8, 3, 8, 2, 8, 0, 3, 2, 8, 6, 7, 9, 5, 0, 0, 6, 6, 6, 7, 5, 7, 2, 4, 2, 0, 3, 9, 4, 2, 6, 4, 4, 5, 9, 0, 4, 1, 5, 8, 4, 6, 9, 5, 3, 9, 0, 9, 4, 9, 9, 2, 6, 7, 0, 6, 0, 0, 5, 4, 3, 3, 5, 0, 1, 7, 4, 3, 9, 4, 2, 2, 3, 1, 2, 9, 5, 4, 0, 8, 3, 2, 1
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 28 2019

Keywords

Examples

			0.26801521271073331568695383828032867950066675724203942644590415846953909499267...
		

Crossrefs

Programs

  • Mathematica
    val = Sqrt[(1 - r*s)*(Log[r*s]^2/(2*Pi*(4*ArcTanh[1 - 2*r*s]*(r*s + (-1 + r*s)*Log[r*s]) - 2*(1 + (-1 + r*s)*ArcTanh[1 - 2*r*s])*Log[1 - r*s] + (-1 + r*s)*(2 + 3*Log[r*s] - 2*Log[1 - r*s]) * QPolyGamma[0, 1, r*s] + (1 - r*s)* QPolyGamma[0, 1, r*s]^2 + (-1 + r*s)*(QPolyGamma[1, 1, r*s] + r*s*Log[r*s]*(r*s^2*Log[r*s] * Derivative[0, 2][QPochhammer][r*s, r*s] - 2*Derivative[0, 0, 1][QPolyGamma][0, 1, r*s])))))] /. FindRoot[{QPochhammer[r*s] == 1/s, 1/s + r*s*Derivative[0, 1][QPochhammer][r*s, r*s] == (Log[1 - r*s] + QPolyGamma[0, 1, r*s])/(s*Log[r*s])}, {r, 1/5}, {s, 2}, WorkingPrecision -> 1000]; RealDigits[Chop[val], 10, -Floor[Log[10, Abs[Im[val]]]] - 3][[1]] (* Vaclav Kotesovec, Oct 02 2023 *)

Formula

Equals limit_{n->infinity} A008485(n) * sqrt(n) / A270915^n.
Showing 1-4 of 4 results.