A327324 Palindromes whose number and sum of divisors are both also palindromic.
1, 2, 3, 4, 5, 7, 333, 17571, 1757571, 1787871, 5136315, 518686815, 541626145, 17575757571, 5136813186315, 5136868686315, 5806270726085, 172757272757271, 513636363636315, 17275787578757271, 17578787578787571, 17878787578787871, 51363636363636315
Offset: 1
Examples
tau(333) = A000005(333) = 6; sigma(333) = A000203(333) = 494.
Programs
-
Magma
[m: m in [1..1000000] | Intseq(m, 10) eq Reverse(Intseq(m, 10)) and Intseq(NumberOfDivisors(m), 10) eq Reverse(Intseq(NumberOfDivisors(m), 10)) and Intseq(&+[d: d in Divisors(m)], 10) eq Reverse(Intseq(&+[d: d in Divisors(m)], 10))];
-
Mathematica
Select[Range[2*10^6], PalindromeQ[#] && PalindromeQ[DivisorSigma[0, #]] && PalindromeQ[DivisorSigma[1, #]] &] (* Amiram Eldar, Aug 31 2019 *)
-
PARI
ispal(n) = my(d=digits(n)); d == Vecrev(d); isok(n) = ispal(n) && ispal(numdiv(n)) && ispal(sigma(n)); \\ Michel Marcus, Sep 02 2019
Extensions
a(20)-a(23) with the help of Daniel Suteu
Comments