A327329 Twice the sum of all divisors of all positive integers <= n.
2, 8, 16, 30, 42, 66, 82, 112, 138, 174, 198, 254, 282, 330, 378, 440, 476, 554, 594, 678, 742, 814, 862, 982, 1044, 1128, 1208, 1320, 1380, 1524, 1588, 1714, 1810, 1918, 2014, 2196, 2272, 2392, 2504, 2684, 2768, 2960, 3048, 3216, 3372, 3516, 3612, 3860, 3974, 4160, 4304, 4500, 4608, 4848, 4992
Offset: 1
Keywords
Examples
Illustration of a(8) = 112 using a symmetric structure constructed with the Dyck path related to partitions described in the 8th row of triangle A237593. _ _ _ _ _ | | | |_ | |_ _ | | | 56 | | | | | _ _ _ _ _ _ _ _|_ _ _ _ _ _ _ _| | | | | | | | 56 | |_ _ | |_ | | | |_ _ _ _ _|
Links
Crossrefs
Programs
-
Mathematica
Accumulate[2*DivisorSigma[1,Range[60]]] (* Harvey P. Dale, Sep 25 2021 *)
-
PARI
a(n) = 2*sum(k=1, n, sigma(k)); \\ Michel Marcus, Dec 20 2021
-
Python
from sympy import divisor_sigma from itertools import accumulate def f(, n): return + 2*divisor_sigma(n, 1) def aupton(terms): return list(accumulate(range(terms+1), f))[1:] print(aupton(55)) # Michael S. Branicky, Dec 16 2021
-
Python
from math import isqrt def A327329(n): return -(s:=isqrt(n))**2*(s+1)+sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1)) # Chai Wah Wu, Oct 22 2023
Comments