A327370 Number of labeled simple graphs with n vertices and exactly n - 1 endpoints (vertices of degree 1).
0, 1, 0, 6, 4, 50, 66, 532, 1016, 6876, 16750, 104456, 303612, 1821976, 6067166, 35857200, 133160176, 785514512, 3192117966, 18948962656, 83099447300, 498931946016, 2336474411062, 14234346694976, 70598633745576, 437304764440000, 2282139344678726, 14390600621415552
Offset: 0
Keywords
Examples
The a(4) = 4 edge-sets: {12,13,14} {12,23,24} {13,23,34} {14,24,34}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..500
Crossrefs
Programs
-
Maple
f:= gfun:-rectoproc({(n-1)*(n-2)*a(n)-n*(n-3)*(n-2)*a(n-1)-n*(n-1)^2*a(n-2)+(2*n-7)*n*(n-1)*(n-2)*a(n-3)-n*(n-1)*(n-2)*(n-3)*(n-4)*a(n-5)=0, a(0)=0, a(1)=1, a(2)=0, a(3)=6, a(4)=4},a(n),remember): map(f, [$0..40]); # Robert Israel, Sep 06 2019
-
Mathematica
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Count[Length/@Split[Sort[Join@@#]],1]==n-1&]],{n,0,5}] With[{nn=30},CoefficientList[Series[x Exp[x^2/2](Exp[x]-x),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Apr 28 2022 *)
-
PARI
seq(n)={Vec(serlaplace(x*exp(x^2/2 + O(x^n))*(exp(x + O(x^n))-x)), -(n+1))} \\ Andrew Howroyd, Sep 05 2019
Formula
E.g.f.: x*exp(x^2/2)*(exp(x) - x). - Andrew Howroyd, Sep 05 2019
(n-1)*(n-2)*a(n) - n*(n-3)*(n-2)*a(n-1) - n*(n-1)^2*a(n-2) + (2*n-7)*n*(n-1)*(n-2)*a(n-3) - n*(n-1)*(n-2)*(n-3)*(n-4)*a(n-5) = 0. - Robert Israel, Sep 06 2019
Extensions
Terms a(8) and beyond from Andrew Howroyd, Sep 05 2019
Comments