A327377 Triangle read by rows where T(n,k) is the number of labeled simple graphs covering n vertices with exactly k endpoints (vertices of degree 1).
1, 0, 0, 0, 0, 1, 1, 0, 3, 0, 10, 12, 12, 4, 3, 253, 260, 160, 60, 35, 0, 12068, 9150, 4230, 1440, 480, 66, 15, 1052793, 570906, 195048, 53200, 12600, 2310, 427, 0, 169505868, 63523656, 15600032, 3197040, 585620, 95088, 14056, 1016, 105
Offset: 0
Examples
Triangle begins: 1 0 0 0 0 1 1 0 3 0 10 12 12 4 3 253 260 160 60 35 0 12068 9150 4230 1440 480 66 15
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325
Crossrefs
Programs
-
PARI
Row(n)={ \\ R, U, B are e.g.f. of A055302, A055314, A059167. my(U=sum(n=2, n, x^n*sum(k=1, n, stirling(n-2, n-k, 2)*y^k/k!)) + O(x*x^n)); my(R=sum(n=1, n, x^n*sum(k=1, n, stirling(n-1, n-k, 2)*y^k/k!)) + O(x*x^n)); my(B=x^2/2 + log(sum(k=0, n, 2^binomial(k, 2)*(x*exp(-x + O(x^n)))^k/k!))); my(A=exp(-x + O(x*x^n))*exp(x + U + subst(B-x, x, x*(1-y) + R))); Vecrev(n!*polcoef(A, n), n + 1); } { for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Oct 05 2019
Formula
Column-wise inverse binomial transform of A327369.
E.g.f.: exp(-x)*exp(x + U(x,y) + B(x*(1-y) + R(x,y))), where R(x,y) is the e.g.f. of A055302, U(x,y) is the e.g.f. of A055314 and B(x) + x is the e.g.f. of A059167. - Andrew Howroyd, Oct 05 2019
Extensions
Terms a(28) and beyond from Andrew Howroyd, Oct 05 2019
Comments