A327384 Number of colored integer partitions of n such that six colors are used and parts differ by size or by color.
1, 6, 27, 92, 273, 720, 1751, 3978, 8565, 17618, 34878, 66792, 124268, 225384, 399618, 694294, 1184340, 1986900, 3282991, 5349372, 8604978, 13678190, 21503439, 33459222, 51563824, 78751470, 119259576, 179169140, 267154842, 395521482, 581629358, 849846186
Offset: 6
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 6..10000 (terms 6..5000 from Alois P. Heinz)
- Wikipedia, Partition (number theory)
Crossrefs
Column k=6 of A308680.
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t-> b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..min(k, n/i)))) end: a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k))(6): seq(a(n), n=6..45);
-
Mathematica
A327384[n_] := SeriesCoefficient[(Product[(1 + x^k), {k, 1, n}] - 1)^6, {x, 0, n}]; Table[A327384[n], {n, 6, 37}] (* Robert P. P. McKone, Jan 31 2021 *)
Formula
a(n) ~ exp(Pi*sqrt(2*n)) / (2^(17/4) * n^(3/4)). - Vaclav Kotesovec, Sep 16 2019
G.f.: (-1 + Product_{k>=1} (1 + x^k))^6. - Ilya Gutkovskiy, Jan 31 2021