A327385 Number of colored integer partitions of n such that seven colors are used and parts differ by size or by color.
1, 7, 35, 133, 434, 1253, 3311, 8135, 18851, 41573, 87920, 179305, 354270, 680631, 1275430, 2337097, 4196717, 7398699, 12826324, 21895160, 36848119, 61201709, 100415175, 162886318, 261422357, 415397836, 653899589, 1020282424, 1578729491, 2423647471, 3693050242
Offset: 7
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 7..10000 (terms n = 5001..9000 from Vaclav Kotesovec)
- Wikipedia, Partition (number theory)
Crossrefs
Column k=7 of A308680.
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t-> b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..min(k, n/i)))) end: a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k))(7): seq(a(n), n=7..45);
-
Mathematica
A327385[n_] := SeriesCoefficient[(Product[(1 + x^k), {k, 1, n}] - 1)^7, {x, 0, n}]; Table[A327385[n], {n, 7, 37}] (* Robert P. P. McKone, Jan 31 2021 *)
Formula
a(n) ~ exp(Pi*sqrt(7*n/3)) * 7^(1/4) / (32 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 16 2019
G.f.: (-1 + Product_{k>=1} (1 + x^k))^7. - Ilya Gutkovskiy, Jan 31 2021