A327386 Number of colored integer partitions of n such that eight colors are used and parts differ by size or by color.
1, 8, 44, 184, 654, 2048, 5836, 15400, 38173, 89752, 201740, 436104, 911072, 1846648, 3643360, 7016016, 13217634, 24408992, 44260816, 78923480, 138571450, 239838288, 409619196, 690956800, 1152075322, 1900139104, 3102050748, 5015671600, 8036376650, 12766039888
Offset: 8
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 8..10000
- Wikipedia, Partition (number theory)
Crossrefs
Column k=8 of A308680.
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t-> b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..min(k, n/i)))) end: a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k))(8): seq(a(n), n=8..45);
-
Mathematica
A327386[n_] := SeriesCoefficient[(Product[(1 + x^k), {k, 1, n}] - 1)^8, {x, 0, n}]; Table[A327386[n], {n, 8, 37}] (* Robert P. P. McKone, Jan 31 2021 *)
Formula
a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (2^(19/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 16 2019
G.f.: (-1 + Product_{k>=1} (1 + x^k))^8. - Ilya Gutkovskiy, Jan 31 2021