A327387 Number of colored integer partitions of n such that nine colors are used and parts differ by size or by color.
1, 9, 54, 246, 945, 3186, 9729, 27414, 72315, 180415, 429156, 979425, 2155485, 4593330, 9510624, 19188360, 37815948, 72950634, 138002024, 256405887, 468550278, 843138585, 1495634373, 2617905474, 4525424256, 7731765279, 13065217956, 21849902348, 36184992984
Offset: 9
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 9..10000
- Wikipedia, Partition (number theory)
Crossrefs
Column k=9 of A308680.
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t-> b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..min(k, n/i)))) end: a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k))(9): seq(a(n), n=9..45);
-
Mathematica
A327387[n_] := SeriesCoefficient[(Product[(1 + x^k), {k, 1, n}] - 1)^9, {x, 0, n}]; Table[A327387[n], {n, 9, 37}] (* Robert P. P. McKone, Jan 31 2021 *)
Formula
a(n) ~ exp(Pi*sqrt(3*n)) * 3^(1/4) / (64 * n^(3/4)). - Vaclav Kotesovec, Sep 16 2019
G.f.: (-1 + Product_{k>=1} (1 + x^k))^9. - Ilya Gutkovskiy, Jan 31 2021