A327394 Number of stable divisors of n.
1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 4, 5, 2, 4, 2, 4, 3, 3, 2, 5, 3, 3, 4, 4, 2, 5, 2, 6, 4, 3, 4, 5, 2, 3, 3, 5, 2, 4, 2, 4, 6, 3, 2, 6, 3, 4, 4, 4, 2, 5, 4, 5, 3, 3, 2, 6, 2, 3, 4, 7, 3, 5, 2, 4, 4, 5, 2, 6, 2, 3, 6, 4, 4, 4, 2, 6, 5, 3, 2, 5, 4, 3, 3, 5, 2, 7, 4, 4, 4, 3, 4, 7, 2, 4, 6, 5, 2, 5, 2, 5, 6, 3, 2, 6, 2, 5, 3, 6, 2, 4, 3, 4, 4, 3, 4, 7, 3
Offset: 1
Keywords
Examples
The stable divisors of 60 are {1, 2, 3, 4, 5, 15}, so a(60) = 6.
Links
Crossrefs
Programs
-
Mathematica
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; Table[Length[Select[Divisors[n],stableQ[PrimePi/@First/@FactorInteger[#],Divisible]&]],{n,100}]
-
PARI
A378442(n)={my(v=apply(primepi, factor(n)[, 1])); for(j=2, #v, for(i=1, j-1, if(v[j]%v[i]==0, return(0)))); 1}; \\ From the function "ok" in A316476 by Andrew Howroyd, Aug 26 2018 A327394(n) = sumdiv(n,d,A378442(d)); \\ Antti Karttunen, Nov 27 2024
Formula
a(n) = Sum_{d|n} A378442(d). - Antti Karttunen, Nov 27 2024
Extensions
More terms from Antti Karttunen, Nov 27 2024
Comments