A327402 Quotient of n over the maximum stable divisor of n.
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 4, 3, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 3, 5, 1, 6, 1, 4, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 7, 3, 2, 1, 4, 1, 2, 7, 1, 5, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 6, 1, 5, 1, 2, 1, 12, 1, 2, 3, 8, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 8, 3
Offset: 1
Keywords
Examples
The stable divisors of 60 are {1, 2, 3, 4, 5, 15}, so a(60) = 60/15 = 4.
Links
Crossrefs
Programs
-
Mathematica
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; Table[n/Max[Select[Divisors[n],stableQ[PrimePi/@First/@FactorInteger[#],Divisible]&]],{n,100}]
-
PARI
A378442(n)={my(v=apply(primepi, factor(n)[, 1])); for(j=2, #v, for(i=1, j-1, if(v[j]%v[i]==0, return(0)))); 1}; \\ From the function "ok" in A316476 by Andrew Howroyd, Aug 26 2018 A327402(n) = fordiv(n,d,if(A378442(n/d),return(d))); \\ Antti Karttunen, Jan 28 2025
Formula
a(n) = n/A327393(n).
Extensions
Data section extended to a(105) by Antti Karttunen, Jan 28 2025
Comments