cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327449 Number of ways the first n primes can be partitioned into three sets with equal sums.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 423, 0, 2624, 0, 13474, 0, 0, 0, 611736, 0, 4169165, 0, 30926812, 0, 214975174, 0, 1590432628, 0, 11431365932, 0, 83946004461, 0, 0, 0, 4615654888831, 0, 35144700468737, 0, 271133285220726, 0, 2103716957561013, 0, 0, 0, 0, 0, 990170108748552983, 0, 7855344215856348141
Offset: 1

Views

Author

N. J. A. Sloane, Sep 19 2019

Keywords

Comments

It is not true that a(2k+1) is always 0.

Examples

			One of the three solutions for n = 10: 3 + 17 + 23 = 2 + 5 + 7 + 29 = 11 + 13 + 19.
		

References

  • Keith F. Lynch, Posting to Math Fun Mailing List, Sep 17 2019.

Crossrefs

Programs

  • Maple
    s:= proc(n) option remember; `if`(n<2, 0, ithprime(n)+s(n-1)) end:
    b:= proc(n, x, y) option remember; `if`(n=1, 1, (p-> (l->
          add(`if`(p>l[i], 0, b(n-1, sort(subsop(i=l[i]-p, l))
          [1..2][])), i=1..3))([x, y, s(n)-x-y]))(ithprime(n)))
        end:
    a:= n-> `if`(irem(2+s(n), 3, 'q')=0, b(n, q-2, q)/2, 0):
    seq(a(n), n=1..40);  # Alois P. Heinz, Sep 19 2019
  • Mathematica
    s[n_] := s[n] = If[n < 2, 0, Prime[n] + s[n - 1]];
    b[n_, x_, y_] := b[n, x, y] = If[n == 1, 1, Function[p, Function[l, Sum[If[ p > l[[i]], 0, b[n - 1, Sequence @@ Sort[ReplacePart[l, i -> l[[i]] - p]][[1;; 2]]]], {i, 1, 3}]][{x, y, s[n] - x - y}]][Prime[n]]];
    a[n_] := If[Mod[2+s[n], 3]==0, q = Quotient[2+s[n], 3]; b[n, q-2, q]/2, 0];
    Array[a, 40] (* Jean-François Alcover, Apr 09 2020, after Alois P. Heinz *)
  • PARI
    EqSumThreeParts(v)={ my(n=#v, vs=vector(n), m=vecsum(v)/3, brk=0);
      for(i=1, n-1, vs[i+1]=vs[i]+v[i]; if(vs[i]<=min(1000,m), brk=i));
      my(q=Vecrev(prod(i=1, brk, 1+x^v[i]+y^v[i])));
      my(recurse(k,s,p)=if(k==brk, if(s<#q, polcoef(p*q[s+1],m,y)), if(s<=vs[k], self()(k-1, s, p*(1 + y^v[k]))) + if(s>=v[k], self()(k-1, s-v[k], p)) ));
      if(frac(m), 0, recurse(n-1, m, 1 + O(y*y^m))/2);
    }
    a(n)={EqSumThreeParts(primes(n))} \\ Andrew Howroyd, Sep 19 2019

Formula

a(n) > 0 <=> n in { A103208 }, with odd n in { A111320 }. - Alois P. Heinz, Sep 19 2019

Extensions

Corrected and a(30)-a(52) added by Andrew Howroyd, Sep 19 2019
a(53) and beyond from Alois P. Heinz, Sep 19 2019