cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327475 Number of subsets of {1..n} whose mean is an integer, where {} has mean 0.

Original entry on oeis.org

1, 2, 3, 6, 9, 16, 27, 46, 77, 136, 239, 426, 769, 1400, 2571, 4762, 8857, 16568, 31139, 58734, 111165, 211044, 401695, 766418, 1465489, 2807672, 5388783, 10359850, 19946833, 38459624, 74251095, 143524762, 277742489, 538043664, 1043333935, 2025040766, 3933915349
Offset: 0

Views

Author

Gus Wiseman, Sep 13 2019

Keywords

Examples

			The a(0) = 1 through a(5) = 16 subsets:
  {}  {}   {}   {}       {}       {}
      {1}  {1}  {1}      {1}      {1}
           {2}  {2}      {2}      {2}
                {3}      {3}      {3}
                {1,3}    {4}      {4}
                {1,2,3}  {1,3}    {5}
                         {2,4}    {1,3}
                         {1,2,3}  {1,5}
                         {2,3,4}  {2,4}
                                  {3,5}
                                  {1,2,3}
                                  {1,3,5}
                                  {2,3,4}
                                  {3,4,5}
                                  {1,2,4,5}
                                  {1,2,3,4,5}
		

Crossrefs

If the subset is required to contain n, we get A063776.

Programs

  • Maple
    with(numtheory):
    b:= n-> add(2^(n/d)*phi(d), d=select(x-> x::odd, divisors(n)))/n:
    a:= proc(n) option remember; `if`(n=0, 1, b(n)-1+a(n-1)) end:
    seq(a(n), n=0..36);  # Alois P. Heinz, Jan 13 2024
  • Mathematica
    Table[Length[Select[Subsets[Range[n]],#=={}||IntegerQ[Mean[#]]&]],{n,0,10}]
  • Python
    from sympy import totient, divisors
    def A327475(n): return sum((sum(totient(d)<>(~k&k-1).bit_length(),generator=True))<<1)//k for k in range(1,n+1))-n+1 # Chai Wah Wu, Feb 22 2023

Formula

a(n) = A051293(n) + 1.