A327483 Triangle read by rows where T(n,k) is the number of integer partitions of 2^n with mean 2^k, 0 <= k <= n.
1, 1, 1, 1, 2, 1, 1, 5, 4, 1, 1, 22, 34, 8, 1, 1, 231, 919, 249, 16, 1, 1, 8349, 112540, 55974, 1906, 32, 1, 1, 1741630, 107608848, 161410965, 4602893, 14905, 64, 1, 1, 4351078600, 1949696350591, 12623411092535, 676491536028, 461346215, 117874, 128, 1
Offset: 0
Examples
Triangle begins: 1 1 1 1 2 1 1 5 4 1 1 22 34 8 1 1 231 919 249 16 1 1 8349 112540 55974 1906 32 1 1 1741630 107608848 161410965 4602893 14905 64 1 ...
Links
- Alois P. Heinz, Rows n = 0..13, flattened
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[2^n],Mean[#]==2^k&]],{n,0,5},{k,0,n}]
-
Python
from sympy.utilities.iterables import partitions from sympy import npartitions def A327483_T(n,k): if k == 0 or k == n: return 1 if k == n-1: return 1<
Chai Wah Wu, Sep 21 2023 -
Python
# uses A008284_T def A327483_T(n,k): return A008284_T(1<
Chai Wah Wu, Sep 21 2023
Formula
T(n+1,n) = 2^n for n >= 0. - Chai Wah Wu, Sep 14 2019
Extensions
a(28)-a(35) from Chai Wah Wu, Sep 14 2019
Row n=8 from Alois P. Heinz, Sep 21 2023
Comments