A327484 Number of integer partitions of 2^n whose mean is a power of 2.
1, 2, 4, 11, 66, 1417, 178803, 275379307, 15254411521973, 108800468645440803267, 964567296140908420613296779144, 219614169629364529542990295052656098001967511, 38626966436500261962963100479469496821891576834974275502742922521
Offset: 0
Keywords
Examples
The a(0) = 1 through a(3) = 11 partitions: (1) (2) (4) (8) (11) (22) (44) (31) (53) (1111) (62) (71) (2222) (3221) (3311) (4211) (5111) (11111111)
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..15 (n = 0..13 from Alois P. Heinz)
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[2^n],IntegerQ[Mean[#]]&]],{n,0,5}]
-
Python
from sympy.utilities.iterables import partitions def A327484(n): return sum(1 for s,p in partitions(1<
Chai Wah Wu, Sep 21 2023 -
Python
# uses A008284_T def A327484(n): return sum(A008284_T(1<
Chai Wah Wu, Sep 21 2023
Extensions
a(7) from Chai Wah Wu, Sep 14 2019
a(8)-a(11) from Alois P. Heinz, Sep 21 2023
a(12) from Chai Wah Wu, Sep 21 2023
Comments