cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327492 Partial sums of A327491.

Original entry on oeis.org

0, 2, 3, 5, 7, 9, 10, 12, 15, 17, 18, 20, 22, 24, 25, 27, 31, 33, 34, 36, 38, 40, 41, 43, 46, 48, 49, 51, 53, 55, 56, 58, 63, 65, 66, 68, 70, 72, 73, 75, 78, 80, 81, 83, 85, 87, 88, 90, 94, 96, 97, 99, 101, 103, 104, 106, 109, 111, 112, 114, 116, 118, 119
Offset: 0

Views

Author

Peter Luschny, Sep 27 2019

Keywords

Crossrefs

Programs

  • Julia
    bitcount(n) = sum(digits(n, base = 2))
    A327492(n) = 2n - bitcount(n) + mod(n, 2)
    [A327492(n) for n in 0:62] |> println # Peter Luschny, Oct 03 2019
  • Maple
    # For len >= 1:
    A327492_list := len -> ListTools:-PartialSums([seq(A327491(j), j=0..len-1)]):
    A327492_list(99)
  • Mathematica
    a[n_] := 2*n + Mod[n, 2] - DigitCount[2*n, 2, 1]; Array[a, 100, 0] (* Amiram Eldar, Aug 30 2024 *)
  • PARI
    seq(n)={my(a=vector(n+1)); for(n=1, n, a[n+1] = a[n] + if(n%4, n%2 + 1, valuation(n,2))); a} \\ Andrew Howroyd, Sep 28 2019
    
  • PARI
    a(n) = n<<1 - hammingweight(n) + bittest(n,0); \\ Kevin Ryde, May 31 2022
    
  • SageMath
    @cached_function
    def A327492(n):
        if n == 0: return 0
        r = valuation(n, 2) if 4.divides(n) else n % 2 + 1
        return r + A327492(n-1)
    print([A327492(n) for n in (0..19)])
    

Formula

a(n) = A005187(n) + n mod 2.
a(n) ~ 2*n. - Amiram Eldar, Aug 30 2024