A327492 Partial sums of A327491.
0, 2, 3, 5, 7, 9, 10, 12, 15, 17, 18, 20, 22, 24, 25, 27, 31, 33, 34, 36, 38, 40, 41, 43, 46, 48, 49, 51, 53, 55, 56, 58, 63, 65, 66, 68, 70, 72, 73, 75, 78, 80, 81, 83, 85, 87, 88, 90, 94, 96, 97, 99, 101, 103, 104, 106, 109, 111, 112, 114, 116, 118, 119
Offset: 0
Links
- Amiram Eldar, Table of n, a(n) for n = 0..10000
Programs
-
Julia
bitcount(n) = sum(digits(n, base = 2)) A327492(n) = 2n - bitcount(n) + mod(n, 2) [A327492(n) for n in 0:62] |> println # Peter Luschny, Oct 03 2019
-
Maple
# For len >= 1: A327492_list := len -> ListTools:-PartialSums([seq(A327491(j), j=0..len-1)]): A327492_list(99)
-
Mathematica
a[n_] := 2*n + Mod[n, 2] - DigitCount[2*n, 2, 1]; Array[a, 100, 0] (* Amiram Eldar, Aug 30 2024 *)
-
PARI
seq(n)={my(a=vector(n+1)); for(n=1, n, a[n+1] = a[n] + if(n%4, n%2 + 1, valuation(n,2))); a} \\ Andrew Howroyd, Sep 28 2019
-
PARI
a(n) = n<<1 - hammingweight(n) + bittest(n,0); \\ Kevin Ryde, May 31 2022
-
SageMath
@cached_function def A327492(n): if n == 0: return 0 r = valuation(n, 2) if 4.divides(n) else n % 2 + 1 return r + A327492(n-1) print([A327492(n) for n in (0..19)])
Formula
a(n) = A005187(n) + n mod 2.
a(n) ~ 2*n. - Amiram Eldar, Aug 30 2024