A327500 Number of steps to reach a fixed point starting with n and repeatedly taking the quotient by the maximum divisor whose prime multiplicities are distinct (A327498, A327499).
0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 2, 1, 3, 1, 1, 3
Offset: 1
Keywords
Examples
We have 9282 -> 546 -> 42 -> 6 -> 2 -> 1, so a(9282) = 5.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
- Gus Wiseman, Sequences counting and encoding certain classes of multisets
Crossrefs
Programs
-
Mathematica
Table[Length[FixedPointList[#/Max[Select[Divisors[#],UnsameQ@@Last/@FactorInteger[#]&]]&,n]]-2,{n,100}]
-
PARI
A351564(n) = issquarefree(factorback(apply(e->prime(e),(factor(n)[,2])))); A327499(n) = fordiv(n,d,if(A351564(n/d), return(d))); A327500(n) = { my(u=A327499(n)); if(u==n, 0, 1+A327500(u)); }; \\ Antti Karttunen, Apr 02 2022
Extensions
Data section extended up to 105 terms by Antti Karttunen, Apr 02 2022
Comments